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Abstract

The new fractal curve described in this paper is deterministic (though
it appears at a casual glance to be random), simple to specify, and
easy and quick to compute. It will automatically fill any pre-defined
bounded and connected region of the plane, is self-avoiding, and never
self-intersects. The definition of the curve is given, along with pictures
of it in two dimensions generated by a C++ implementation. Simula-
tions of the curve are statistically analysed with the result that—under
a well-defined and broad range of conditions—its fractal dimension is
about 1.5. The curve can use a single line segment inside the bounded
region as a starting pattern, or a non-self-intersecting polyline. Sev-
eral of the curves can be generated in the same region, and will fill it
without crossing themselves or each other. The definition extends to
any number of dimensions; in K dimensions the curve would become
a K-1 dimensional hypersurface filling a bounded hypervolume.

Keywords: Peano curve, Hilbert curve, Sierpinski gasket, Koch curve,
coastline curve, fractal, space-filling curve.

Introduction

A common computational way of generating an approximation to a random
fractal curve (similar to the coastlines discussed by Mandelbrot [6]) is to bi-
sect a straight line segment and to move the half-way point at right angles
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to the segment by some (pseudo-) random distance. This process is then
repeated recursively on the two halves thus created, with the expected dis-
tance of the random movement reduced by a fixed factor (say 0.5) at each
level of the recursion. Figure 1 from the Boston Center for Polymer Studies
[2] shows the result of such a process.

Figure 1: The first five stages of recursion of a random fractal
curve from the Boston Center for Polymer Studies [2]. Note
the self-intersection near the top.

The method just outlined produces a curve, but that curve is not guaran-
teed to reside in any particular region of the plane, and nor is it guaranteed
never to self-intersect.

Regular space-filling curves such as the Peano [8] and Hilbert [4] curves
(Figure 2(a)) never self-intersect, of course, and—if the recursion is infinite—
completely cover a known rectangular region of the plane, which is to say
that their fractal dimension [7] is 2. There are variations on them which will
fill non-rectangular regions as well as rectangular ones (see Figure 2(b)). The
region they fill, however, is entirely decided by their elemental shape and the
recursion rule.

A self-avoiding curve should also never self-intersect. Peitgen, Jürgens
and Saupe [9] describe a self-avoiding space-filling curve, but this will again
only fill a rectangular region. It also prompts the authors to say, “With a
plain ‘multiple reduction copy machine’1 it is not possible to create a self-

1This is an explicatory thought machine (by analogy with a thought experiment) of
the authors for producing multiple copies of a shape under transformations.
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avoiding and space-filling curve that is aesthetically pleasing.”

Figure 2: (a)The first five stages of recursion of a Hilbert
curve [4] from Balayoghan [1]. (b) A regular space-filling curve
filling a non-rectangular region.

The recursive curve described in this paper is self-avoiding, and is also
deterministic like a Peano curve, in that its shape is entirely decided by
its initial conditions. But it does not consist of multiple scaled copies of a
fixed initial shape (that is, it is not a product of one of Peitgen, Jürgens
and Saupe’s multiple reduction copy machines). And I contend that it is
aesthetically pleasing2.

It also has the useful properties that it will fill any pre-defined connected
area of the plane and will never self-intersect3. It is possible to generate
it starting from any given non-self-intersecting polyline within the area (in-
cluding a single line segment). The new curve is also quick and simple to
compute.

Though this is not investigated here, the definition of the curve extends
quite straightforwardly and comprehensively to form (hyper)surfaces in any
number of dimensions.

2Here the reader must make appropriate allowances for authorial bias.
3These two properties were the initial requirements that I had for the curve. They

came from a number of engineering applications that were the genesis of it.
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This paper is intended to be a descriptive and empirical introduction to
the new curve as others may also have applications for it.

The reader wishing to find a good book on space-filling curves in general
is referred to the one by Hans Sagan [10].

The new curve

Consider the following method of generating a curve, this time within a
bounded area: bisect a straight line segment that lies completely within the
area and move the half-way point along the bisector (as in the coastline curve
described at the start of the Introduction). But this time move the point as

far as possible as long as it stays at least some exclusion radius away from

every other part of the curve and the boundary. ‘As far as possible’ here
means that both halves of the bisector either side of the initial segment need
to be considered. The point chosen is the one that lies farthest along the
bisector in either direction away from the initial segment.

Now repeat that process recursively on the two halves, reducing the value
of the exclusion radius by some factor at each recursive step, again as be-
fore. In general the exclusion is for all parts of the curve except the split-
line-segment’s two immediately-joining before-and-after line segments, as its
distance to them must always be zero.

The result is a curve such as the one shown in Figure 3, which was gen-
erated by the C++ program mentioned above.

Characteristics of the new curve

Figure 4 shows the original square diagonal and the first five recursions in
the generation of the curve in Figure 3. Clearly the order in which the
recursion is done will affect the resulting curve. This example used breadth-
first recursion, and the curve was alternately scanned from bottom left to top
right, and then back again. If the example in Figure 3 is computed breadth-
first, but always scanned from bottom left to top right then the result is as
in Figure 5. Note how this has led to large line segments near the origin and
smaller ones near the top right. More on this below. If the recursion were
to be done depth-first this would generate a much greater bias, as, after the
first division, the first half of the original line would be fully divided before
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Figure 3: An example of the new curve. The closed area was
the unit square, and the starting line segment was its diagonal
from the origin. The initial exclusion radius was 0.1, and this
was reduced by a factor of 0.8 at each level of recursion. The
recursion was run 10 times.

the second half was considered as anything more than an obstruction. The
choice of recursion sequence is one of the freedoms available in the definition
of the curve.

The first division in Figure 4 obviously involves a degenerate choice be-
tween two possibilities in that—because of symmetry—the split-point could
equally have been moved to the bottom-right corner of the square. Note
that, even though the result of that first division is almost as symmetrical,
the second division is completely determined by the order in which the seg-
ments of the polyline were visited. Other than such degeneracies (which in
general will almost-surely never happen), the curve is completely determined
by the starting conditions, the recursion sequence, and the factor by which
the exclusion radius is reduced at each step.

Two other freedoms available in the definition of the curve are the choice
of that initial exclusion radius and its reduction factor. Figure 6 (a) shows
the curve resulting from the same conditions as Figure 3, but with a reduction
factor of 0.7 instead of 0.8.

The ‘gaps’ in the pattern (more pronounced in Figure 6 than in Figure
3) are filled by subsequent recursions as illustrated by Figure 6 (b), where
the line segment labelled A in the left-hand figure has split with the re-
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Figure 4: The original segment and the first five recursions of
the curve in Figure 3. The recursion was done breadth-first,
and the polyline being generated was alternately scanned from
bottom left to top right and then back again. The discs are
the exclusion radii at each recursion level.

sulting point moving across the triangle-shaped void to near the opposing
vertex. This gives rise to an interesting phenomenon: the stability of near-
equilateral-triangle-shaped voids in patterns with low values of the exclusion-
radius reduction-factor. When such a shape arises, the stability happens be-
cause one of its edges gets split and the split point moves to near the opposite
vertex, roughly preserving the shape. This is illustrated in Figure 7, which
shows the first few stages of recursion on an actual equilateral triangle inside
a slightly larger equilateral boundary.

High values of the reduction factor avoid this phenomenon for intuitively
obvious reasons: the segments are being split and becoming shorter and
shorter, but the exclusion radius is not falling so fast with the recursion. The
curve therefore is becoming more flexible and string-like (as opposed to being
like a chain of hinged rods), and its freedom of movement is constrained by
the comparatively high exclusion radius values—it threads its way between
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Figure 5: The same conditions as Figure 3, except that the
curve was always scanned from bottom left to top right.

Figure 6: (a) The same conditions as Figure 3, except that the
exclusion radius reduction factor was 0.7 instead of 0.8. (b)
The next level of recursion down, in which the line segment
labelled A has been split and the split point moved to near
the opposite vertex of the triangle-shaped void.

other parts of itself near to the median boundaries defined by the exclusion
discs.
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Figure 7: The stability of an equilateral triangle: the starting
configuration, the first four recursions, and the tenth recur-
sion.

Simulation and statistics

If the curve were a true fractal, one would expect its length to increase with
the depth of recursion as a power law, which is to say that one would expect

ln(L) = d ln(
2N

L0

)

where L is a measured length of the curve, L0 is the length of the original
line that was split to make the curve, N is the depth of recursion (N = 0 at

L = L0), and d is the power-law exponent. The value of 2
N

L0

is the number of
times the first segment has been cut divided by its original length. In other
words, it is an inverse resolution-length for the total length measurement.
The fractal dimension of the curve, D, would be given by D = d + 1.

Figure 8 shows plots of ln(L) against ln(2
N

L0

) for a range of radius reduction
factors with the conditions otherwise as in Figure 3. The data points have
been omitted for clarity, but are equally-spaced along the abscissa for each
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Figure 8: The length of the curve as a power law. The top
characteristics are virtually indistinguishable and correspond
to the conditions in Figure 3 with reduction factors of the
exclusion radius of 0.3, 0.5, 0.6 and 0.7. The remaining char-
acteristics have the reduction factors indicated at their ends.

characteristic and correspond to each value of N from 0 to 15. L0, in this
case, is

√

2.
For reduction factors of 0.7 and below, the characteristics are straight

and virtually indistinguishable.
It is clear that the line for a reduction factor of 0.95 is not straight, though

it is not clear whether its asymptote would be finite. A finite asymptote
would imply that, even after infinite recursion, the corresponding curve would
still have a finite length. A non-straight characteristic with an infinite value
after infinite recursion would imply a curve of infinite length, but not a curve
that was a scale-free self-similar fractal. For scale-free self-similarity the
characteristic line has to be straight, like those for reduction factors of 0.7
and below.

If each characteristic for reduction factors of 0.7 and below is subjected
to linear regression the average of the gradients, d, of the resulting straight
lines is 0.496 with a standard error of 0.002. This means that for those four
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characteristics the mean fractal dimension is 1.496, which—with the neces-
sary caveats about small sample size—tempts me to the intriguing conjecture
that the true value may be exactly 1.5.

Extending the idea

Figure 9: A curve that started as a square of half the side-
length of the bounding box placed at the box’s centre. The
flood fill is to make the curve-generating method’s preserva-
tion of the interior and the exterior clearer.

Instead of starting with a single line segment, one can start with a pre-
defined polyline (or polygon, as with the triangle in Figure 7). Figure 9 shows
the result of starting with a square of side-length 0.5 in the middle of the
unit bounding box. The resulting closed curve has been flood-filled to make
the curve-generating-method’s preservation of the interior and the exterior
clearer.

The bounding region can be any shape. Figure 10 shows a curve generated
in an L-shaped bounding area. This leads immediately to the idea of running
several intertwining curves at once. Figure 11 shows the starting curves and
the resulting curves from such an experiment.
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Figure 10: The curve in an L-shaped bounding region; the
starting curve was also L-shaped along the centre lines of the
two limbs of the bounding region.

Figure 11: The starting configuration, and the result of run-
ning the two starting polylines against each other.

Conclusions

The curve that I needed would:

1. Fill any pre-defined closed connected area;

2. Be unbroken;
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3. Not self-intersect;

4. Be possible to generate starting from any given non-self-intersecting
polyline within the area (including, obviously, any single line segment);

5. Extend straightforwardly and comprehensively to any number of di-
mensions (especially 3); and

6. Be reasonably quick and simple to compute for finite recursions.

The curve presented in this paper fulfils all those requirements.
Extending the curve in two-dimensions up to a surface in three-dimensions

is conceptually simple: the closed area would become a closed volume (usu-
ally, though not necessarily, bounded by a polyhedron) and the starting line
segment (or segments) would become triangle(s) within it. There are a num-
ber of ways that a triangle can be split into other triangles. The simplest,
perhaps, is to bisect each edge and to join those points to form four new
triangles. (This scheme is commonly used to generate random fractal land-
scapes, as described by Hughes [5].) The movement of the splitting-points
would be slightly more complicated than in two dimensions: for splitting-
points on edges that were interior to the surface being created the points
would be moved as far as possible along a line that was perpendicular to
the edge and that bisected the dihedral angle between the two triangles that
shared the edge; for splitting points on edges at the boundary of the surface
being created the points would be moved as far as possible along a line that
was perpendicular to the edge and that lay in the plane of the triangle owning
the edge. In both cases the points would be (as in two dimensions) moved so
that they and the triangles they defined came no closer than the exclusion
radius to anything else. In K dimensions the triangles would become K − 1
dimensional simplexes and the boundary would usually (though again, not
necessarily) be a polytope.

I would be most interested to hear of possible applications for the new curve.
Also, as I intend to work on applications of it rather than analysis of it myself,
I would be interested to hear of analytical results on its characteristics. My
e-mail address is given above.

12



Acknowledgement

I would like to thank John Woodwark for his comments on the first draft of
this paper.

References

[1] V. B. Balayoghan (Department of Computer Sciences, The University
of Texas at Austin): applet for generating various regular Peano curves
at http://www.cs.utexas.edu/users/vbb/misc/sfc/Oindex.html

[2] Boston University Center for Polymer Studies: Coastline applet at
http://polymer.bu.edu/java/java/coastline/coastline.html

[3] Free Software Foundation Inc. (59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA): GNU General Public License at
http://www.gnu.org/copyleft/gpl.html
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