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This paper presents a multidimensional CSG geometric modeller. It then shows how this 
modeller can be used to produce a compact representation of the complete configuration-
space map of a mechanism composed of polyhedral parts. The map is derived directly 
from the three-dimensional geometric model that describes the mechanism, and allows 
more degrees of freedom than any other current system. Methods of exploring the map 
to give the kinematics of the mechanism will also be described and examples will be 
given. We will then go on to show how geometric constraints can be reformulated as a 
multidimensional CSG expression describing the constraints problem in a space similar 
to the configuration space above. Geometric constraints representing mechanisms will 
be described and the resulting mechanisms shown. Finally we will show how the two 
techniques, which are both coded using the same multidimensional modeller, can be 
combined. This allows parts of a machine that are known (such as slides and hinges) to be 
described explicitly using constraints, and parts that are unknown (such as interferences 
between moving parts) to be coded as a configuration-space map. The entire mechanism 
can then be simulated and its behaviour examined. 

Keywords: Configuration Space Maps, Constraint Resolution, CSG, Mechanisms, Geo­
metric Modelling, SVLlS. 

1. Introduction 

This paper is about using a multidimensional CSG [10] modeller to build represen­
tations of configuration-space maps [12] and of systems of constraints. These can 
then be combined to give real-time kinematic predictions about the behaviour of 
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machines, these predictions being completely derived from the machines' geometry. 
A key fact about the CSG (or set-theoretic) representation underlies everything 

described here. It is that the complexity of a CSG tree does not change with the 
number of dimensions of the space containing the geometric model that it represents. 
The model's primitives at the leaves of the tree will (in general) become more 
complicated as the number of dimensions rises, but the tree itself is dimension-
independent. 

This fact has allowed us to write a multidimensional geometric modeller that 
is based on, but is also independent of, our conventional three-dimensional CSG 
modeller svLls. This multidimensional modeller is called SVLIS-M [4]. 

SVLIS-M, which is written in C + + , currently allows models to be generated in 
up to 32 dimensions*and we routinely work with models of between 8 and 12 di­
mensions. This would not be possible in a B-rep-type modeller that needed to keep 
track of the topological relationships between the entities that it was represent­
ing, as combinatorial problems would quickly become intractable as the number of 
dimensions increased. 

2. SVLIS-M and Configuration-space Maps 

A single rigid object in space has six degrees of freedom—three translations and 
three rotations. By specifying six mutually independent values for these we can 
uniquely position and orient the object anywhere in space. A configuration space 
[12] is a space of degrees of freedom, with a dimension for each degree. Our single 
object would therefore have a six-dimensional configuration space. 

Suppose we now have two objects in real-world space, one of which can move 
as before and which we shall consequently call a nomad, and the other of which is 
fixed and which we shall call the obstacle. The configuration space for this system 
is still six dimensional as only the nomad is free. But the nomad is not completely 
free—clearly it can only go to places where it is not obstructed by the obstacle. 

We can now define a configuration-space map[7]: it is a division of the configura­
tion space into two types of region—one in which every point represents a place and 
orientation where the nomad can go (called the safe region), and the complement 
of that, which is the region where the nomad interpenetrates the obstacle (called 
the prohibited region). Each region may be multiply connected and may be non-
manifold, but, given the shapes of the two objects, the two regions are uniquely and 
completely defined. It is, of course, possible to add more nomads. This increases 
the dimensionality of the map by the number of degrees of freedom added. 

However, it is one thing to define a configuration space map, and quite another 
to construct it. Making configuration space maps is a very hard problem which has 
received considerable attention. For reviews the reader is referred to the book by 
Latombe [5] or our own paper [12]. But making such a map is well worth the effort 
for many problems, because it completely encapsulates all the kinematic behavior of 
a group of rigid objects moving relative to one another. In particular, the problem 

"Increasing this would just involve the rewriting of a small bit-manipulation class. 
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of path planning* [12] reduces to finding a track for a single point through the 
configuration space map that lies entirely in a safe region of the map. 

A number of new and related algorithms for constructing configuration space 
maps have been devised by one of us and are described in detail in a recent thesis 
[13]. These algorithm descriptions fill some 90 pages, and so the two main ones are 
but summarized here; the thesis is available online. 

• We have a general algorithm for non-polyhedral objects, but this is extremely 
memory-hungry as it relies on a recursive division of an omnimodel of the prob­
lem. An omnimodel is a combination of the problem's configuration space with 
the three*real-world dimensions to give a model with a number of dimensions 
equal to three plus the number of degrees of freedom. The omnimodel effec­
tively represents the nomad(s) as they sweep through all possible positions 
and orientations in space as a single CSG expression, along with the static 
obstacles. The configurations space map is a projection—parallel to the three 
real-world dimensions of the omnimodel—of the set-theoretic intersection of 
the obstacles and the swept nomads. This projection is done by recursively 
dividing the omnimodel into a bin-tree of boxes, and then projecting occupied 
boxes into the hyperplane defined by the configuration-space dimensions. 

• We have a much more efficient algorithm for constructing configuration-space 
maps for polyhedral nomads moving among polyhedral obstacles. This works 
analytically, and depends on the facts that Minkowski difference is the same 
thing as a configuration-space map without rotations, and that the Minkowski 
difference of two unions of intersections is the union of the Minkowski dif­
ferences of the intersections. In the case of polyhedra all intersections are 
obviously convex, and computing the Minkowski differences of two convex 
polyhedra is straightforward. To distribute unions over intersections in a 
CSG expression is to take the disjunctive form? We have extended the idea 
of Minkowski difference to include rotations, and all this allows us to create 
an analytical CSG expression for the configuration-space map of polyhedral 
nomads moving among polyhedral obstacles. Being a single expression, this 
is much more compact than the recursive hyperbox division required for our 
method for non-polyhedral objects. 

Both these algorithms have been implemented in svLls-M. 
To continue with polytopes, consider the simple two-dimensional situation shown 

in Figure 1. Here a square nomad is free to go everywhere but where it overlaps the 

^That is, finding a path between the obstacles for the nomad or nomads from starting configurations 
to desired destinations; we return to this below. 
tOr sometimes two; see Figures 1 and 2. 
§In the worst case, finding the disjunctive form is an exponentially-hard problem. But in practice, 
because of the way that it is natural for people to define objects by building them from unions of 
simpler shapes, most real models can be put in disjunctive form without too much computational 
effort. 
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obstacle 

o 
nomad 

Fig. 1. A two-dimensional problem with a three-dimensional configuration-space map. The 
small square nomad is free to translate and to rotate everywhere but where it overlaps the fixed 
rectangular obstacle. 

rectangular obstacle. The nomad has three degrees of freedom—two translations 
and a rotation—and so has a three-dimensional configuration space. Figure 2 shows 
the prohibited region of the configuration-space map computed by the analytical 
technique outlined above. 

Fig. 2. The prohibited region of the configuration-spate map for the problem in Figure 1 ray-
traced by SVLlS. The translation dimensions are the horizontal plane, and the rotation dimension 
is the vertical axis. 

Of course it is not possible to render configuration-space maps that are more than 
three dimensional, so to check them we use an animated display of the nomad(s) 
and the obstacle. In this the nomads can be moved by the computer's mouse or 
a 6 degrees-of-freedom input device such as a Spacemouse [6]. As the nomads 
move, the point representing their positions and orientations in their configuration 
space is continually membership-tested against the configuration-space map. When 
a movement would result in the configuration point straying into the prohibited 
region the movement may be prevented, or it may be permitted but with a visible 
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flag being set in the graphics window to indicate the transgression. 
Figure 3 shows two configurations of a nomad (the brown union of two tetra-

hedra) either side of a simple obstacle (the blue cube). If the configuration point 

* 

Fig. 3. Two configurations of a nomad (the brown union of two tetrahedra) either side of a simple 
obstacle (the blue cube). 

is moved along the straight line in the configuration space that joins these two 
configurations the nomad enters the prohibited region, as shown in figure 4. 

Fig. 4. A configuration about half way between those in Figure 3 where the configuration point 
has entered the prohibited region. The green box in Figure 3 is the flag to indicate that those 
configurations are safe. Here the flag has become a red pyramid to indicate that the configuration 
point is in the prohibited region. 

In addition to membership testing configuration points against the configuration 
space map, we can also perform ray-tracing using the interval algorithm described 
in another of our papers [2]. Ray-tracing in a configuration-space map allows any 
possible collisions along a straight-line\o be detected. The ray between the two 
configuration points in Figure 3 enters and leaves the prohibited configuration-space 
region at the configurations shown in Figure 5. 

'That is, a straight line in the configuration space, not in the real world, of course. 
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4 * 

Fig. 5. The two configurations of the nomad from Figure 3 where a ray between those extreme 
configurations just enters and just leaves the prohibited region of the configuration space. 

Given the configuration space ray-tracer, it is possible to implement a method 
due to one of us [9] that finds a path between two points in a CSG model that 
avoids obstacles; it also functions as a finder of connected components. The way 
this works is to cast a ray between the points. If this hits nothing, then the ray is 
the path. If it hits something, the mid point of the solid(s) [i.e. of the prohibited 
region(s)] along the ray is found, and a new point is generated in the hyperplane that 
perpendicularly bisects the ray at that point. This point must be in the safe region, 
and is found either by recursive division of that hyperplane or (and in practice this 
is often more efficient) by a Monte Carlo technique. The ray is then broken into 
two rays, one from the start point to the new point, the other from there to the 
end, making a polyline with two segments. 

This breaking process is carried out recursively on the pairs of segments gener­
ated until a path is found, or the depth of the recursion is such that it is assumed 
that the polyline being generated is trapped. 

This is a simple method, and it is not guaranteed to find a path should one 
exist. But it does run quickly (for the problem in Figure 3 a single path takes 
about two minutes on a 400MHz Pentium running Linux) so it is possible to run 
the search many times and look for an optimum (that is a minimum path length) 
among the resulting paths. Figure 6 shows the point on such a free path found by 
this method. It corresponds roughly with the nearest point on the free path to the 
blocked configuration shown in Figure 4. Of course, the shortest such path may 
not be desirable from an engineering standpoint: in general it will bring the moving 
nomads as close as possible without contact to the obstacles, so, for example, any 
inaccuracies in manufacture may cause glancing collisions. 

The polyline generator is a very simple path planner, and is not intended to be 
either optimal, or even particularly good, though its speed does allow good paths 
to be found by multiple tries. But it can form the basis for the implementation 
of more sophisticated methods based on such things as potential fields and medial 
surfaces [11] (related, in this context, to Canny's road-maps, q.v. [3]) which we 
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* 

Fig. 6. A configuration about half way between those in Figure 3, but on the free polyline path 
generated by the method described in the text. 

shall be investigating. The advantage of the ray-tracer is that it guarantees that 
any path found really does not cause the nomad to hit anything; it does not suffer 
from the possibility of failing to find collisions, as might, for example, a discreet 
and incremental method that took a series of isolated configuration points and 
membership tested them. 

The ray-tracer also allows other problems to be solved. Figure 7 shows a spanner 
tightening a nut amongst some obstacles on a flat plate. The spanner-nut combina­
tion has three degrees of freedom—the centre of the nut can be placed anywhere in 
the plate and the two can rotate about the axis of the nut. Suppose, as designers, 
we need to know where the nut may be placed on the plate such that the spanner 

Fig. 7. A spanner tightening a nut amongst obstacles. 

has enough rotational freedom to tighten it. If we turn the spanner over each time 
the nut is levered round then the spanner needs to be able to rotate through at 
least 30°. If we don't turn the spanner over, then we need at least 60°. 

We computed the configuration-space map of the spanner-nut combination and 
the obstacles. Then, for a square matrix of 200 x 200 centre points for the nut on 

In
t. 

J.
 S

ha
pe

 M
od

el
. 2

00
0.

06
:1

31
-1

43
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
Q

U
E

E
N

SL
A

N
D

 o
n 

04
/2

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



138 A. Bowyer, D. Eisenthal, D. Pidcock & K. Wise 

the plate, we cast a ray in the third dimension of the problem—the angle through 
which the spanner turns. For each ray we computed the longest continuous interval 
(representing an angle, of course) that was in the free region of the configuration 
space. Figure 8 shows the results. The black regions of the map are locations 

Fig. 8. A map of the problem in Figure 7 in the plane of the plate. The brighter the colour, the 
bigger the angle through which the spanner can turn. 

where the nut cannot be placed at all. In the red region the spanner could only 
rotate through less than 30°, so the nut could be placed here, but not tightened. In 
the blue region the rotational freedom is between 30° and 60° so the nut could be 
tightened here, but only by turning the spanner over. In the grey-to-white region, 
the spanner angle is bigger than 60°, so the nut could be tightened anywhere here 
without turning the spanner over. 

3. S V L I S M and Constraints 

In this context, a constraint is a piece of geometric information that restricts degrees 
of freedom of movement; for example, a point is free to move anywhere in a plane; 
but if it is constrained to be a constant distance from a fixed point, it may then only 
move in a circle. Here we are concerned primarily with constraining the geometrical 
relationships between rigid solids that form the parts of a machine, but the methods 
described below could just as easily be used to define and constrain the shape of an 
individual object. Because a geometric constraint can always be represented as an 
algebraic and trigonometric expression, it is possible to treat that expression as a 
piece of geometry in SVLIS-M. As svLls-M is a CSG modeller, such constraints can 
easily be intersected together to define the region where they are all satisfied. 

To do this, first solid models of the component parts of a machine to be con­
strained are read in from the conventional three-dimensional modeller svLls. Before 
constraints can be imposed on them, points of interest on each part are defined. 
These are known as constraint points. The constraint point has associated with it 
SVLIS-M sets that represent the possible x, y and z positions of the point. These sets 
are written in terms of the degrees of freedom of the part. As a two-dimensional 
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example, consider a crankshaft, A, and a con-rod, B — parts of a reciprocating 
piston engine (Figure 9). 

—7-7-77— 

Fig. 9. Piston with a small amount of slap. 

Ignoring the piston for the moment, this will have six degrees of freedom—two 
translations (XA,VA) and a rotation (9A) for the crankshaft and a corresponding 
(XB,VB,9B) for the con-rod. The process for identifying a constraint point on an 
individual component, A, on Figure 10 goes like this: 

Express Al in terms of the degrees of freedom of part A: 

Constra intPoint Al = A.IdentifyPoint(XAl, YA1) 

where the function Iden t i f yPoint assigns: 

xAl <= xA+ rAlcos(9A) - rAlsin(9A) (1) 

and 

VA! <=VA+ rAlcos{6A) + rAlsin(6A) (2) 

(where rAl is the distance of A\ from an arbitrary origin defined on part A.) 

A, A , 

Fig. 10. Components of the piston example. 

Fixing this part to pivot about A\ at a particular point P = (xp,yp), involves 
intersecting the constraint model with the XAI and yAx sets of constraint point 
A\ equal to the (xp,yp) values of P. Since svLls-M uses closed implicit inequalities 
('solid' is everywhere that an inequality is negative or zero), the absolute value 
function can be used to represent equality (taking the abs of an inequality forces it to 
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be positive everywhere but where it is zero—it turns a solid into a sheet representing 
its surface). Initially (before any constraints are imposed), the constraint model, C 
is the universal set. The constraint model, now becomes: 

c<^c n \xAl-xP\ n \yAl-yp\ (3) 

Constraint points B\ and B2 can be identified on part B (the con-rod) in the 
same way as above. Fixing point B\ to coincide with point Ai on the crankshaft A 
corresponds to intersecting the constraint model as below: 

C < = C 0 \xA2-xBl\ D \yAa-VBi\ (4) 

Continuing with the piston example, the system can represent constraint points 
that are allowed to move between certain bounds, i.e. inequality constraints. This 
is not easy for some other systems. Point B2 may be constrained to have a limited 
movement in the y direction to simulate a piston in a cylinder that has a certain 
amount of slap (for this example we will ignore the fact that in reality this floppiness 
would also allow the piston to rotate a small amount). If the y value of point B2 is 
required to be -0.1 < y < 0.1 (see Figure 9) then the intersected sets are: 

c«=c n 0/B2-O.I) n (-o.i-yfla) (5) 

Note there are no absolute value operators around the sets because they are 
representing inequalities. 

By intersecting all these constraints, we have now constructed a constraint model 
in the six original degrees of freedom of the simple piston example, the piston 
itself being allowed some lateral movement within the cylinder. Any point that 
membership-tests solid against that model will indicate a valid configuration of the 
mechanism. 

It is now possible to use a simple Newton-Raphson procedure (possibly combined 
with a recursive division of the multidimensional volume containing the constraint 
representation) to find and to move along/inside the multidimensional line, sheet, 
or volume that represents the constrained mechanism defined as above. 

Figure 11 shows a more complicated example. It is a series of stills taken from 
an animation of a Peaucellier straight-line motion modelled using our constraints 
system!' 

4. Combining configuration-space maps and constraints 

So far we have shown svLls-M acting in two separate ways to solve configuration-
space problems and constraints problems. But the fact that both sorts of problems 
are described using the same system allows us easily to combine solutions to them, 
giving an even more powerful method of representing the kinematics of machines. 

llThe full animations of all the examples in this paper can be seen at the project website [4]. 
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Fig. 11. The constraints system animating a Peaucellier motion. The red, green and blue lines 
are the coordinate axes. 

If we wish to model the kinematics of a machine consisting of rigid moving 
parts, there are two sorts of information that we may have available. The first 
is the geometry of the parts—this will influence how they move relative to each 
other, as no two parts can be in the same place at once. The second is the types 
of connections between the parts—this too will influence how they move relative to 
each other, as, for example, a pin joint will allow different movements to a sliding 
joint. The first sort of information can be embodied in a configuration space map, 
and the second as a series of geometric constramts. 

In principle just the configuration-space map of all the geometry would be 
enough to decide how the machine worked, but this would be a very inefficient way 
to solve the problem, especially as explicit constraint information about hinges, 
sliders, rollers and so on is almost always available too. 

As the configuration and constraint approaches described in the second and third 
sections of this paper have both been implemented in the same multidimensional 
geometric modeller, we have been able to combine them into an integrated system 
that models the behaviour of machines. 

First, geometric models of the component parts of the machine are created, then 
constraint points on them are defined and a constraints model is built. Then com­
ponents that may interfere are modelled in a configuration space map. Finally, the 
constraints system animates the machine, checking each movement by ray-tracing 
in the configuration-space map for possible interference between the components, 
as in Figure 5. 

Figure 12 shows a three-dimensional four-bar linkage; the two pink triangular 
prisms are free to rotate about the axes of their bases, and their apexes are joined 
by the long green rectangular link. The grey cube is an obstacle to movement. The 
constraints system represented by the linkage and the configuration-space map of 
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Fig. 12. A three-dimensional four-bar linkage with an obstacle modelled and animated using our 
constraint system and our configuration-space map-maker. As before, the red green and blue lines 
are the coordinate axes and the small green cube and red tetrahedron are not part of the problem 
but are simply a collision flag. 

the linkage and the grey cube were computed. The constraints system was then 
used to animate the linkage, following its path in configuration space. This path 
ended when the right-hand pink triangle struck the grey cube, as at that point 
the configuration-space map turned from a safe region to a prohibited region. The 
system was programmed to bounce—reversing its direction of motion whenever an 
obstruction was found—and so the four-bar linkage then moved in the opposite 
direction. 

5. Conclusions 

The principal limitation to the system described in this paper is that the configu­
ration space map-maker can, at the moment, only realistically deal with polyhedra, 
as other shapes use up too much memory. Having said that, we have produced 
complete polyhedral configuration-space maps in twelve dimensions [13], which is 
much more than any other system that we have found in the literature [12]. We 
have also started work on path planners for configuration-space maps. In addition, 
the spanner problem gives an example of a non-path-planning application for these 
maps. 

The combination of a configuration-space map for parts of a machine with a 
constraints model describing the machine's workings has been made easier by the 
implementation of both in the same multidimensional geometric modeller. The 
constraint representation is, effectively, a complicated but low-volume region of the 
configuration space. An obvious next step is to try to exploit this by intersecting the 
constraint representation with the configuration-space map to reduce the complexity 
of the latter and to create a single representation of an entire machine. We intend 
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to follow tha t idea up. 
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