Better and faster pictures
from solid models

by John Woodwark
IBM UK Scientific Centre

and Adrian Bowyer
University of Bath

This paper describes a series of programs for producing pictures
from, and performing other calculations on, set-theoretic solid
models. The programs all use a technique of recursive division of the
space in which the model resides. This ensures that their performance
is better than linear against the complexity of the objects which they

are being used to model.

Introduction

The rationale behind the development
of solid modelling [1] techniques is their
potential to produce complete and
accurate representations for engineer-
ing analysis and, ultimately, synthesis.
However, it is often admitted that most

* of the work on solid modelling so
far has gone into the production of
graphics. This is logical, for a picture of
amodel is usually necessary before one
can be confident in attempting any fur-
ther processing.

Despite the effort put into graphics, it
is still generally thought that producing
pictures of solid models is a time-con-
suming process, and that this s
especially true when more sophisti-
cated and realistic pictures are
required. Many advanced methods of
picture production and enhancement
have been developed in pure computer
graphics work, but these are mostly
based on simple face models, and the
techniques are seldom applied to solid
models.

Why is this? One reason is that many
engineers are clearly reluctant to depart
from traditional standards, meaning
monochrome line drawings. However,
one of the prime purposes of traditional
drawing practice is to overcome the
restrictions of drawing reproduction

Computer-Aided Engineering Journal

techniques; but these historical limi-
tations are currently disappearing, or
becoming less of a problem as more
on-line facilities become available. Elec-
tronics engineers have long since come
not merely to approve of, buttorely on,
coloured pictures as their technology
has become more complicated, and
one does not imagine that mechanical
engineers are any less flexible. A more
substantial reason thatis often given for

not using more sophisticated graphics
is that realistic pictures take much
longer to produce. Indeed solid model-
ling itself has been the subject of
unfavourable comparisons with less
advanced drafting technology on this
very point, whatever sorts of pictures
are being computed.

Why does it take so long to make pic-
tures from solid models? In essence,
time is spent overcoming complexity
which comes from two sources. The
first is inherent in the geometry of the
shape elements used: the necessity to
evaluate algebraic expressions in order
to do anything useful with the model.
The second comes from the number of
elements used, and is time spent
searching through geometric data. The
latter is much more serious because it

Fig. 1 Set-theoretic, face and boundary representation models

The left-hand diagram shows a set-theoretic model made of the set union of two rectangular
blocks. That on the right-hand side shows the same object defined by a list of its faces, which
may have a constraining logical structure imposed upon them to ensure the solidity of the

object defined, thus making a B-rep model

February 1986

17

; Build the bolt's shaft
z_point :=pt(0,0,1)
axis :=In(z_point,z_point)

radius :=diam*0.5
; Now the hex head
root_ 3 :=sqrt(3.0)

radius :=diam*0.5*root_ 3
face_ point :=pt(0,radius,0)

head :=face
FOR count :=1 TO 5 DO
{ angle :=count=*3.1415926/3

}

air filter in Fig. 6.

The SID model building language

blt_ shaft :=cylinder(axis, radius,n_ facets)

face :=space(face_ point,face_ point)

head :=head & spin(face,axis,angle)

Part of the SID code that defined the hex-headed bolt that holds down the top of the

; In returns a line through a point
; in a given direction

; space returns a planar
; face through a point

; with a given surface

; normal

; & means intersection

*

affects the way in which a system per-
forms as the complexity of the model
with which it is concerned increases.
Many current commercial systems
exhibit a markedly worse than linear
performance as models become more
complicated; computation times for
picture generation (and other things)
increase faster than model complexity.
This is the real reason stopping many
techniques which produce very elegant
pictures of teapots from being applied
to models of entire gearboxes or car
bodies.

This paper is an introduction to a suite
of solid modelling programs which have
been developed using algorithms

especially designed to minimise the
effect of complexity on performance (a
number of programs which will be men-
tioned are the subject of more detailed
forthcoming publications, and one has
already been described elsewhere [2]).
All the picture production techniques
described in this paper work in better
than linear time against model
complexity.

Now, almost all commercial solid
modelling systems use what is called a
boundary representation (B-rep), which
represents the surface of the object
being modelled. However, the tech-
niques mentioned in this paper use a
set-theoretic — sometimes called

Fig. 2 Dividing the space in which the model resides
The left-hand diagram shows the blocks model from Fig. 1 being considered inside the cube
indicated. The right-hand diagram shows the pruned model that is needed inside the cube;

just three faces

18

Computer-Aided Engineering Journal

Boolean or constructive solid geometry
(CSG) — representation exclusively
(Fig. 1). That is to say that objects and
parts of objects are represented as a set-
theoretic algebraic expression. The
operands in this expression are ele-
mentary solids, and these are linked by
operators taken from set theory [3].
Many systems use set operations as
input techniques, but nevertheless
build a boundary model.

The advantages of true set-theoretic
modellers are that they make many pro-
cesses easy to program, and that they
are numerically stable. However,
because there is no localisation of the
effect of any of the primitive elements
of which set-theoretic models are com-
posed, the performance of algorithms
deteriorates quickly with complicated
models, and that is why set-theoretic
models, as they stand, are little used.

This difficulty can be overcome by a
technique which is the major feature of
the programs reported 'in this paper:
segmentation of the region of space
occupied by the object being modelied.
This object space is recursively divided
up into a number of smaller volumes, or
sub-spaces. In the case of all the pro-
grams mentioned in this paper, these
are cuboids. During this division pro-
cess the set-theoretic model itself is
pruned [4] (Fig. 2), which removes the
parts of the algebraic expression
describing the model which are not rel-
evant to a given sub-space. The result is
a large number of simple set-theoretic
models, each valid only in its own well
defined volume. These sub-models are
simple to process because of the nu-
merical robustness of the set-theoretic
model, which was mentioned above.
This robustness is not compromised at
all by the division process.

There is one limitation common to all
the programs described in this paper.
That is that all the models created are
facetted. Curved surfaces must be
approximated by a combination of
planes. The systems have only one
primitive: the infinite planar half-space.
This restriction has been accepted in
order to produce a broad spectrum of
interesting and fast running software.
However, as will be mentioned in the
conclusions, this is not a limitation on
the basis of the authors’ techniques for
the control of complexity, and they
have extended the techniques
described in this paper to models of
components with complicated curved
surfaces.

Input

A common criticism of solid modelling
systems is that construction of solid
models is very time consuming, and

February 1986

that the ideas needed for their con-
struction are alien to many potential
system users. While the set-theoretic
. concepts commonly used to construct
solid models (whether set-theoretic or
boundary in their internal represen-
tations) may be less natural than the
better computer-aided drafting sys-
tems, they are a great improvement on
the ad hoc techniques commonly used
to construct face models for pure
computer graphics work.

The authors are well aware of the
desireability of graphical input to solid
models [5], but the techniques pre-
sently available are limited, and a gen-
eral facility can only be obtained from
text input. This has the further advan-
tage in software intended to have a
good degree of standardisation and
portability that it is not necessary to
accommodate various input devices
and protocols. All thatis needed is a text
editor.

The language that the authors have
designed aims to compensate for the
unnaturalness of textual input by allow-
ing the greatest exploitation of the flexi-
bility of a language form. The language
(SID) is structured and Algol-like. SID
shares the fundamental purpose of all
solid model input languages [6] by
allowing the user to construct part-
models and to combine them using the
set-theoretic operators.

However, SID provides two import-
ant groups of additional facilities. The
firstis arange of auxiliary structures and
operations which allow the geometry of
amodel to be written in the language as
a fairly direct translation of the geo-
metric steps in its construction. For
instance, a scalar product between two
vectors can be written as such, and the
resulting numerical value used, say, to
set up a distance between two points.
There is no need for the user to do such
calculatiops himself, or for him to write
out their algebra in full.

The second group of facilities con-
sists of control structures which sim-
plify repetition of parts of a model,
either directly or with parameterisation.
Loops and conditionals are available
within program modules, and addi-
tional modules may be called with
parameter values (which can be geo-
metrical entities as well as scalars). In
addition to assisting in the program-
ming of particular models this allows
the user to construct libraries of par-
ameterised components such as, say,
nuts and bolts, which can easily be
instantiated in different sizes. The com-
ponent models can be structured: so
that, in this example, the correct re-
lationships between head size, thread
length and diameter would be auto-
matically maintained, with the nut or

Computer-Aided Engineering Journal

ANE
‘3%

&

=4

4

Fig. 3 Finding the edges of a model

The model is divided to find vertices (left-hand diagram). The edges between these are then
found. The right-hand diagram shows an un-needed edge between a needed vertex and an
un-needed one (a), un-needed edges between two un-needed vertices (b and), and
un-needed vertices on needed edges (e and f). MEG eliminates all these un-needed features,
producing a simplest possible edge description

bolt being specified by its diameter
only.

. After a model has been defined it is
compiled into a single set-theoretic
expression relating a number of planar
half-spaces. This is then available in a
common form for any of the programs
described in the rest of this paper.

Picture generation

The spatial segmentation techniques
outlined in the introduction have been
applied to three different programs
which produce pictures. They provide a
spectrum of increasing realism at
increasing cost (although this does not
correspond to the chronological order
in which they were written). The first
two programs use the technique of spa-
tial segmentation as a strategy to obtain
a picture of the model. The segmen-
tation process creates sub-volumes and
their associated sub-models on the fly,

processes them, and then discards
them. .
The first program (MEG) uses this
technique to generate a wire-frame rep-
resentation of the edges of the object.
MEG can provide a quick view to verify a
simple shape, and (by changing the
viewing parameters and re-drawing the
wire frame in perspective) it allows the
user to assess various viewpoints
quickly before committing himself to a
more time-consuming process.

MEG starts by dividing up the object
space. As in all these programs a point
of particular concern is control of the
division so that it neither generates
excessively complicated sub-models,
nor segments the model so much that
the processing as a whole is slower
because of the sheer number of sub-
models to be processed. In MEG, divi-
sion is controlled by a geometric analy-
sis of the contents of a given sub-model.
We know that further division of a sub-

DORA
sID

MEG
\ VOLE
| SAM
\ FIDO

The software

Divided Object Ray-casting Algorithm
Set-theoretic Input to DORA

Model Edge Generator

VOLume Evaluator

Surface Area and Mass

Fractals In DORA

February 1986

19

Fig. 4 Pictures generated by four of the programs

a Wire frame generated by MEG (this took about ten minutes on the authors’ VAX 730;
subsequent views of the wire frame would only take a few seconds)

b Shaded but not shadowed picture generated by VOLE (this took about 20 minutes)

space is futile when the sub-model it
contains consists of half-spaces which
all pass through a point. The algorithm
calculates the point nearest to all the
half-spaces, and its average distance
from them. The decision on whether to
divide further is made by comparing
this average distance with the size of the
sub-space.

Constructing a wire frame from a
solid model is not a difficult process.

20

The method is one of generate-and-
test. Potential, or tentative, edges are
formed from the intersections of primi-
tives, and then the real edges among
these are identified by membership
tests [7]. In the current context, this pro-
cess could easily and quickly be applied
to each sub-model as it was generated,
and the first implementation of recur-
sive division [4] was for this purpose.
However, this direct approach leads

Computer-Aided Engineering Journal

to a wire frame which, while correct,
consists of many more than the smallest
possible number of ‘line segments.
Since the aim of MEG is to facilitate
repeated projection and display of the
wire frame, unnecessary wires would
make for inefficiency. It might be pos-
sible to re-assemble the wires, but this
would require a lot of processing and,
possibly, involve numerical problems.
Instead, MEG does not generate the
edges of the model in each sub-space
that it produces; it processes the sub-
spaces to identify tentative vertices of
the model. Further, by applying the pru-
ning technique already mentioned,
each vertex is associated with a sub-
model representing the set-theoretic
relationship of the half-spaces that pass
through it. When division is complete,
the vertices are examined to find pairs
of non-coplanar half-spaces occurring
at more than one vertex.

In this way lists of collinear vertices
are created. Between each pair of ver-
tices on such a list there may tentatively
be an edge. Further pruning and mem-
bership testing determines whether
each such edge actually exists, and
those that do are aggregated into the
longest possible wires. At the same time
the colours associated with the half-
spaces which generate an edge are aver-
aged to produce a notional edge colour.
This may be used to colour the wire
frame to make it easier for the user to
distinguish different parts of the model.

The second program in the package

(VOLE) produces continuous-tone
colour pictures, with shading and
hidden-surface removal. VOLE’s

method, which is reported in detail
elsewhere [2], is to deform the set-
theoretic model into an object space
aligned with the screen co-ordinate sys-
tem in such a way that a picture of the
deformed object, seen in parallel pro-
jection, corresponds to a picture of the
original object seen in the perspective
projection required. As in MEG, divi-
sion is used as a picture production
strategy, and the depth of division is
conveniently controlled by screen res-
olution. In VOLE the divided model is
also discarded. VOLE is unusual in the
small amount of memory that it
requires. It provides a performance
between that of MEG and that of DORA
(described below) except for very large
models, for which DORA is faster.
DORA is based on the technique of
ray-casting. A picture is produced by
considering every pixel on the display
device, and generating a ray into the
scene corresponding to a line from the
eye position through that pixel (Fig. 5).
The ray is followed until a surface of the

. object is struck, when the colour of that

surface is painted into the pixel. This

February 1986

technique has previously been used for
producing pictures of solid models (8],
but with only a somewhat worse-than-
linear performance against complexity.

DORA starts as the other programs do
by dividing the object space. In DORA’s
case, however, the divided structure is
retained, and can be used to produce a
number of different pictures. Because
of this, the division process is designed
to perform a near-optimal division, with
the idea that the time needed can be
recouped by increasing the speed of
picture production over a number of
pictures. '

The division strategy is essentially
one of previewing the results of the divi-
sion of a given sub-space before actu-
ally performing it. This is not only
applied to deciding whether to divide a
given sub-space, but also to deciding
the position-of the plane splitting the
sub-space into two smaller ones. When
comparing alternative divisions, the
program considers the likelihood of a
sub-space’s being struck by a ray, as
well as the complexity of the sub-model
that it contains. Constructing the seg-
mented sub-model takes a time roughly
proportional to model complexity, and
the size of the segmented model, which
is considerable, is also proportional to
the size of the original model. The sub-
sequent ray-casting process is, how-
ever, attractively insensitive to model
complexity.

The ray-casting process in DORA
(which is similar to parallel US work [9],
although that does not use solid mod-
els) compares each ray with the division
structure, and subsequently with the
contents of the sub-spaces through
which it passes. Both the traversal of the
division and the comparison with the
model are performed in the one-dimen-
sional parameter space of the ray, and
are consequently fast. Provided that the
division has been performed reason-
ably efficiently, most of the path of an
average ray will be through sub-spaces
containing null sub-models (empty

boxes, in other words). Only as the ray .

approaches the surface of the object
must appreciable geometric work be
done on parts of the model.

As models become more compli-
cated, traversing the segmentation
(which is organised as a tree) becomes
only slightly more time consuming,
and, since each ray only strikes the sur-
face of the model once, there is little
increase in computation time. As with
VOLE, the performance of this
algorithm is more dependent on the
complexity of the view than on the com-
plexity of the model.

Because (unlike VOLE) every pixel on
the screen is always considered individ-
ually by DORA, it is a simple matter to

Computer-Aided Engineering Journal

d

Fig. 4

¢ Picture generated by DORA (it took about half an hour) with both shading and cast

shadows

d Picture generated by FIDO, which was used to add a rusty texture (this took about 40

minutes)

model the effect of a number of light
sources, with an increase only in the
time spent on lighting intensity calcula-
tions. More sophisticated effects may
be produced at a cost which is propor-
tional to the number of rays needed.
The simplest effect is to generate a
second ray from each point on the
model struck by the viewing ray back to
the light source. If this second ray
strikes another part of the model, then

February 1986

the first point is in shadow; if not, it is
directly illuminated. With appropriate
lighting parameters, cast shadows can
easily be simulated in this way, and this
can be extended to shadows from mul-
tiple light sources. Additionally, reflec-
tive surfaces can be modelled by
causing the viewing ray to bounce off
mirror surfaces. Atmospheric effects,
such as fog or mist, can also be simul-
ated by attenuating colours propor-

21

tionally to the length of the viewing ray.
Even more complicated effects, such as
inter-reflections between objects, can
be simulated (at some cost) by generat-
ing a fan of rays from points on the
object. So far shadowing and reflec-

S tions have beenimplemented in DORA,
@ and experiments have been carried out

with multiple light sources.

To a design engineer the synthesis of
texture is probably a more interesting
development than very complicated
lighting. Recent texture simulation
techniques have mainly relied on the
mapping of two-dimensional texture
patterns onto the faces of an object
(10,11]. This is only suitable for
topologically simple objects, because
of the problems of joining the edges of
the piece of texture correctly.

The authors have implemented a
technique of solid texturing, based on
three-dimensional fractals, which paral-
lels the latest pure computer graphics
work [12,13], although that is not fractal
based. The pseudo-fractals, as they
should properly be called, are defined
within the entire object space, but only
evaluated at the surface of the
component.

This is achieved by another tree-
structured division of space in a pro-
gram called FIDO. The division is cre-
ated dynamically as and when fractal
values are required. Because of the
coherence of the ray-casting process
only a small part of the tree of fractal
values needs to be generated to provide
a value at a given surface point. So far
the fractal values produced by FIDO
— : . have only been used to perturb colour
a values, which can yield a sand-blasted
effect, or, more spectacularly (as in Fig.
6b), a rusty appearance. Other effects
may be achieved by using the fractals to
perturb the surface normal at each
point.

\

Fig. 5 Ray-casting to make a picture of a model

Through each pixel on the graphics screen a line from the eye is traced into the model. The
first surface that it hits defines the colour that needs to be painted into the corresponding
pixel

Other processes

The main feature of the software dis-
cussed in this paper is its ability to
produce high-quality graphics at
reasonable cost, butitisimportantto be
able to exploit the properties of solid
models as far as possible, and the cal-
culation of mass and area properties is a
facility that is extremely useful, and not
too difficult to implement.

In calculating these properties (which
is done by a program called SAM) the
division technique is again employed.
This is similar to the approach taken by

b : others [14], except that they do not use a
Fig. 6 A model of a car’s air filter pruning process. As SAM divides. Fhe
a Model created by DORA ob]ec‘t space, sub-space.s are clgssufled
b Rust added to the model by FIDO as being outside the object, inside the
These pictures each took about 45 minutes to generate on the VAX 730. The fact that SID Object, or possibly containing some of
contains a loop instruction and parameterised objects made the filter very easy to model the surface of the object. In the case of

22 Computer-Aided Engineering Journal February 1986

sub-spaces of the last type, division
continues to a given resolution which
determines the accuracy of the analysis.
Within each undecided sub-space a
point is generated pseudo-randomly
from the uniform distribution over the
sub-space and amembership test s per-
formed. If the point is inside the object,
the volume of the sub-space is added to
the object volume; if not, then the sub-
space volume is not added. Other mass
properties are obtained by appropriate
summations of sub-space masses.

Area calculations are more of a prob-
lem with set-theoretic models, unlike
boundary models where areas can be
computed directly. Sarraga [15] sug-
gests a segmentation in the parametric
space of the faces, but the authors pre-
fer to use the volume segmentation
again, which has to be computed in any
case, and they believe it to be more
efficient.

Essentially, for each sub-space, each
half-space is considered in turn. A
bounded area of it is generated, by
intersecting it with a convenient projec-
tion of the sub-space. Now, some of this
area may lie outside the sub-space, but
SAM does not need to know how much.
SAM again generates a random point
from the uniform distribution over the
bounded area of the half-space, and
tests whether it is inside both the sub-
space and on the surface of the sub-
model. If it is, the area of the bounded
piece of half-space is added onto the
appropriate totals (Fig. 7). It is, of
course, necessary to be careful with the
membership testing to ensure that
areas of coincident half-spaces which all
lie on the surface of the model do not
cause an erroneous multiplication of
the area.

. Implementation

Excepting VOLE, which was originally
run on a DEC PDP-11, all the programs
described in this paper were developed
on a DEC VAX 11/730. They are all writ-
ten in standard Fortran 77 with the aim
of maximum portability. Some of the
programs are already running on Prime
equipment, and are being transferred
to Apollo workstations and a Honeywell
MULTICS system.

The requirements for graphics
devices are simple. MEG just needs a
line drawing function, VOLE needs a
display which can receive blocks of a
picture, and DORA generates pictures a
scan line atatime. SID and DORA are by
far the largest of the programs, but their
use of memory is highly coherent, so
they are very suitable for virtual mem-
orﬁ}‘)systems. The authors’ VAX has only
1 Mbyte of physical memory, and any
one program is only permitted to use

Computer-Aided Engineering Journal

~ A
Py,
AL
s

4 -4
9%

Fig. 7 Finding surface areas

The sub-space cuboid (a leaf of the division tree) is projected onto the surface of interest to
form a quadrilateral in it. Part of that quadrilateral lies inside the model, part on its surface,
and part outside the sub-space. A membership test.serves to discriminate between these
possibilities forarandom pointin the quadrilateral, which decides if its area should, or should
not, be added to the accumulating total for the model’s whole surface area

H |
i

Fig. 8 A vacuum fabrication plant
This was designed by final-year engineering students at Bath University, who also created the
model using SID (this picture took about 45 minutes to generate on the VAX 730)

February 1986 " 23

256 Kbytes. Nevertheless, models with
5000 half-spaces can be handled with-
out any noticeable deterioration in
performance through paging. Above
this size page fault statistics indicate
considerable activity, but computation
times do not seem greatly affected.

Conclusions

The authors have presented an outline
of a number of complementary pro-
grams designed to extend the degree of
realism associated with solid models
from the level currently thought econ-
omical. The software can alternatively
be considered as a vehicle for pure
computer graphics work in which the
advantages of solid modelling are
offered as incidentals.

There are a number of possible
developments of this work. The sim-
plest would be to extend the range of
visual effects which can be produced by
ray-casting. This is straightforward,
given the efficient method for casting a
single ray. A more profound enhance-
ment to the programs would be the
extension of the types of primitive avail-
able. The authors have leap-frogged the
obvious next step of introducing the
usual solid modelling primitives (quad-
rics and the torus), and have been
developing techniques (broadly similar
to those in Ref. 16) based on a more
general blended surface formulation
(Fig. 9), of which the classical solid
modelling primitives are special cases.
Spatial segmentation and pruning are
again used to give reasonable system
performances on what are algebraically
very complicated models.

Algorithms with poor performance
are often defended on the basis that the
development of parallel architectures
will increase their feasibility with the
passage of time. As well as giving very
good performance on a conventional
von Neumann machine, the techniques
of spatial segmentation outlined in this
paper are also particularly suitable for
parallel implementation, and a detailed
simulation has been performed on a
parallel-processor version of VOLE [17]
with good results.

Acknowledgments

The authors would like to acknowledge
the help of their colleagues Andrew
Wallis and Kevin Quinlan, who created
some of the models and code,
Normalair-Garrett plc (Fig. 4. is one of
their products), undergraduate stu-
dents Steven Plain, Richard Spink and
Paul Wells, who created the model in
Fig. 8, and the UK Science and Engineer-
ing Research Council, who funded
some of this work.

24

Fig. 9 A picture from the experimental blended surface modeller
The object is a casting from a gear testing machine, which has been modelled using smoothly
curving surfaces)

References

1

2

3

10

n

12

13

14

15

16

17

REQUICHA, A. A. G.: ‘Representations for rigid models: theory, methods, and systems’,
ACM Computing Surveys, 1980, 12, (4), pp. 437-464

WOODWARK, |. R., and QUINLAN, K. M.: ‘Reducing the effect of complexity on volume
model evaluation’, Computer-Aided Design, 1982, 14, (2), pp. 89-95

REQUICHA, A. A. G., and VOELCKER, H. B.: ‘Constructive solid geometry’. Production
Automation Project Technical Memo 25, University of Rochester, Rochester, NY, USA,
Nov. 1977

WOODWARK, J. R., and QUINLAN, K. M.: ‘The derivation of graphics from volume
models by recursive division of the object space’. Proceedings of Computer Graphics 80
Conference, London, England, Aug. 1980, pp. 335-343

WOODWARK, J. R., and WALLIS, A. F.: ‘Graphical input to a Boolean solid modeller’.
Proceedings of CAD 82, Fifth international Conference on Computers in Design Engineer-
ing, Brighton, England, March 1982

REQUICHA, A. A. G.: ‘Part and assembly description languages’. Production Automation
Project Technical Memo 28, University of Rochester, Rochester, NY, USA, Nov. 1977
TILOVE, R. B.: ‘Set membership classification: a unified approach to geometric inter-
section problems’, /EEE Transactions on Computers, 1980, C-29, (10), pp. 874-883
ROTH, S. D.: ‘Ray casting for modelling solids’, Computer Graphics & Image Processing,
1982, 18, (2), pp. 109-144

GLASSNER, A. S.: ‘Space subdivision for fast ray tracing’, IEEE Computer Graphics &
Applications, 1984, 4, Oct., pp. 15-22

BLINN, J. F.: ‘Simulation of wrinkled surfaces’, Computer Graphics, 1978, 12, (3),
pp. 286-292

BLINN,). F., and NEWELL, M. E.: ‘Texture and reflection in computer generated images’,
Communications of ACM, 1976, 19, (12), pp. 542-547

PEACHY, D. R.: ‘Solid texturing of complex surfaces’. Proceedings of SIGGRAPH 85, San
Francisco, CA, USA, july 1985, pp. 279-286

PERLIN, K.: ‘Animage synthesiser’. Proceedings of SIGGRAPH 85, San Francisco, CA, USA,
July 1985, pp. 287-296 :

LEE, Y. T., and REQUICHA, A. A. G.: ‘Algorithms for computing the volume and other
integral properties of solids’, Communications of ACM, 1982, 25, (9), pp. 635-641 (Part 1),
pp. 642-650 (Part 2)

SARRAGA, R. F.: ‘Computation of surface area in GMSolid’, IEEE Computer Graphics &
Applications, 1982, 2, Sept., pp. 65-77

MIDDLEDITCH, A. E., and SEARS, K. E.: ‘Blend surfaces for set-theoretic volume model-
ling systems’. Proceedings of SIGGRAPH 85, San Francisco, CA, USA, July 1985, pp. 161-
170

WOODWARK, J. R.: ‘A multiprocessor architecture for viewing solid models’, Displays
Journal, 1984, April, pp. 97-103

Dr.). R. Woodwark is with IBM UK Scientific Centre, Athelstan House, St. Clement Street,
Winchester, Hants. $O23 9DR, England. Dr. A. Bowyer is with, and Dr. J. R. Woodwark was
formerly with, the School of Engineering, University of Bath, Claverton Down, Bath BA2 7AY,
England.

Computer-Aided Engineering Journal February 1986

