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Abstract

There are several ways to represent, to handle and to display curved surfaces in computer-aided geometric design that involve the use of
polynomials. This paper deals with polynomials in the Bernstein form. Other work has shown that these polynomials are more numerically
stable and robust than power-form polynomials. However, these advantages are lost if conversions to and from the customary power form are
made. To avoid this, algebraic manipulations have to be done in the Bernstein basis. Farouki and Rajan (R.T. Farouki, V.T. Rajan,
Algorithms for polynomials in Bernstein form, Computer Aided Geometric Design 5 (1988) 1-26) present methods for doing arithmetic
on univariate Bernstein-basis polynomials. This paper extends all polynomial arithmetic operations to multivariate Bernstein-form poly-
nomials.© 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction and the Bernstein form of the polynomia(x) is

For the representation of curves and surfaces in compu- SRR
ter-aided geometric design polynomials are almost always P®) = > PRBIX)
used. For B-rep geometric modellers, the use of parametric k=0
polynomials is often the most convenient. However, a more
familiar and, in certain respects, simpler representation of a
polynomial is the implicit power form. Some set-theoretic
geometric modellers make use of this surface representatio
and employ interval arithmetic to locate an implicit surface
in space; this is an approximation to finding roots of the B
polynomial (see, for example, Bowyer [1] or Snyder [2]).

An implicit power-form polynomial of degree € 4" in
the variablex is defined by:

wherePy are the corresponding Bernstein coefficients. The
conversion between the power- and Bernstein-form repre-
sentation is possible and can be performed regardless of the
"humber of variables (see below).
Farouki and Rajan argue in their papers [3,4] that the
ernstein basis is numerically more stable and better condi-
tioned for finding roots than the power form. They also
recommend the use of Bernstein polynomials for a stable
implementation of geometric modelling algorithms. And, as
n a consequence of this and a variety of other technical and
px) = Z aka, historical factors, the parametric Bernstein form is widely
k=0 used in B-rep modellers.

The use of the Bernstein form in set-theoretic geometric
modelling requires the manipulation of multivariate Bern-
stein-form polynomials directly if numerical accuracy and
stability are not to be lost. This paper introduces an arith-
metic for multivariate polynomials given in this representa-
tion and compares the computational load generated by the
same operations applied to power- and Bernstein-form poly-

n ~ nomials. All the algebra in this paper applies equally to both
BR(O) = (k)xk(l %" k=01..n @ parametric and implicit polynomials. Our own application
(the set-theoretic geometric modellerLis [1]) uses the
mponding author. Spatial Technology, Cambridge. latter, but everything below could just as easily be used

E-mail addressjakob.berchtold@spatial.com (J. Berchtold). for parametric patches and the like.

wherea, € #. The equatiorp(x) = 0 is the implicit equa-
tion corresponding to the polynomig(x).

An equivalent representation pfx) can be given in terms
of the Bernstein form. For a given € ./ the Bernstein
polynomials of degreaon the unit interval [0,1] are defined

by

0010-4485/00/$ - see front matt€r 2000 Elsevier Science Ltd. All rights reserved.
Pll: S0010-4485(00)00056-7
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2. Bernstein polynomials Definition. N = (ny,...,n) is the multi-index of maxi-
mum degrees so that is the maximum degree &f in p(x).
The Bernstein polynomials were introduced by S. Bern-
stein to give a very simple proof of Weierstrass's approx-
imation theorem (see Lorentz [5]). Nowadays they are very
popular for generating Baer, B-spline or NURBS curves
and surfaces.
For a givenn € .17, the corresponding Bernstein poly-
nomials of degreain a general intervdx, x] are defined by
— 2z — "k pX) = > aXx
n)(X 2?mf . k=01..n (2 és
K whereg € Z represents the corresponding coefficient to
Sometimes it is more convenient to consider the Bern- eachx'. (Note that some of the, may be 0.)
stein polynomials in a unit interval [0,1] as the region of  As before a univariate Bernstein polynomial in the vari-
interest (see Eq. (1) for their definition). However, this is ablex of degreen on the unit interval [0,1] is defined by
not a real restriction because a bijection can always be n
found, which maps the region of interest to the unit Bl(x) = ( )xk(l — "k k=0,1,...n
interval. k
The Bernstein polynomials have many properties that are
interesting for the geometric modelling. Lists of them are
given by Farouki and Rajan [3], and Spencer [6].

Definition. The setS= {l € Nl = N} contains all the
combinations fron%' which are smaller than or equal to the
multi-index N of maximum degree.

Then an arbitrary polynomig(x) can be written as

$®=(

For the multivariate case we consider, without loss of gener-
ality,* the unit boxU = [0, 1]' and thelth Bernstein poly-
nomial of degreeN is defined by

2.1. Conversion between power form and Bernstein form  gN(x) = Binll(xl)"'BiTl x) x € [0.1].

The purpose of this paper is to present methods that The Bernstein coefficien®(U) of p(x) overU are given
remove the need for power-form to Bernstein-form conver- py
sion as much as possible. However, conversion is not always
avoidable and often has to be done at least once. !
In our earlier report [7] a method is given for finding the J

Bernstein form of a multivariate polynomial. Another P'(U):Z les ©)

Ny Y
approach is given in the papers written by Garloff [8], and I=! ( )
Zettler and Garloff [9]. J

For this paper we have adopted the way of writing multi-  And so the Bernstein form of a multivariate polynomial
variate Bernstein-form polynomials used by Garloff and p(x) is defined by:
other authors (e.g. Sherbrooke and Patrikalakis [10]), and
this is reproduced here as the notation will be used through-P(X) = > Pi(U)BJ'(x).

out. I€S
Let | € 4/ be the number of variables and =
(xl,...,xl)E%'. A multi-index | is defined asl = 2.2. Examples
(iq, ... 1)) € A, For two given multi-indicesl,J € N
we writel =Jif0=i; <j.,...0=i =j. Example 1. A polynomial pg(xs, %) in power form is
given by

Notation: We sex' for a multiplication ofx}--x.
Notation: The multi-inde)) only contains zeros. PO(X1, Xo) = X + X — 1.
Notation: The result of + J is a multi-indexK given by
ki =i1+ 1.k =1 +].

Notation: The result of — J is a multi-indexK given by S={(0,0)(0,1)(1,0)(1, 1)}.
by =iy =1,k = it i o
Notation: We write( }) for a multiplication of(j:)--(j!).

The maximum degree N = (1, 1) and the seBis

The Bernstein coefficients can be calculated by using

. . ) . 7 Eqg. (3)
Notation: The minimum function mihgJ) returns a multi-
indexK by takingk; = min(iy,j1), ..., K = min(j, j)). bog = -1 boy =0
Notation: The maximum function malx{) returns a
multi-index K by taking k; = maxiy,ji),...k = B0 =0 and  bgq =1
max(y, jp).

In this case the multivariate Bernstein polynomials are
Let p(x) be a multivariate polynomial ihvariables with real
coefficients. ! Because of the bijection mentioned above.
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given by

B0 =(1—x)1-x%) and

B{G1 (%) = (1 — X)X

Big) =x(1-%) and  BID00 = XX.

Therefore the Bernstein forivg(x,, Xp) of the given poly-
nomial pg(Xy, Xo) is

bo(X, %) = —(1 — XA — %) + X Xo.

Example 2. A polynomialpf(x;,%,) in power formis given
by
pf(Xy, Xp) = XaXp + Xp + 3.

The multi-indexN is N = (2,1) and this yields to the
following setS:

S={(0,0)(0, 1)(1,0)(1, 1)(2,0)(2, 1)}.
Using Eg. (3) gives the Bernstein coefficients:
b(0,0) = 3 b(O,l) = 4 b(l,O) = 3

b(l,l) =4 b(z‘o) =3 andb(zyl) =05,

The Bernstein polynomials are given by:

B = (1—x)?(1—x%)  and

B () = (1 — x)°,

B@Y(x) = 2x(1 — X )(1 —X,)  and
(10) 1 1 2

BID(0 = 2a(1 = x)%

B2 =2(1—%) and BEIx) =xx
The Bernstein formbf(x;,x;) of the polynomialpf (x;,x;)
is therefore

bf (Xg, X2) = 3(1 — X1)*(1 — Xp)
+3(2X1(1 — X)L — %)) + 3E(L — X)

FAL — X)X + 42X (1 — X1)Xo) + 5XXo.

3. Arithmetic for multivariate Bernstein-form
polynomials

As mentioned above, if the stability of the Bernstein basis
is to be retained while polynomials are being manipulated
an arithmetic for Bernstein-form polynomials has to be
defined. In their paper [4] Farouki and Rajan give an arith-
metic for univariate Bernstein-form polynomials.

In this section an arithmetic for multivariate Bernstein-
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form polynomials is derived. The resulting arithmetic rules
are more complicated than the ones for the univariate case.
For the following formulae the way of writing multivariate
Bernstein-form polynomials as shown in the last section is
adopted.

3.1. Degree elevation

A given multivariate Bernstein-form polynomié{x) of
maximum degreeN has a non-trivial representation in a
Bernstein basis of higher degreld { E). The numbers in
the multi-indexE are equivalent to the times a degree eleva-
tion has to be performed for tHevariables ofx. The new
(N + E) Bernstein coefficients{' = can be obtained in the
following way:

()
L K—-L
FI(<N+E) — Z NTE F|_ Ke Sﬁew (4)
=
()
where the multi-index LE S ={l: | = max0,K —
E),...min(N,K)} andK € S,epy={1: 1 =0,....,(N + E)}.

For a bivariate Bernstein-form polynomidl(x;,x;) of
degree in,n) this formula can be rewritten in the following
Fi(nj"lﬂ,n+s)

min(m.i) min(n, j) (:)(, _r k) (T)(J i I)
Z Z m+r n+s Fi
i ) ( J )

wherei =0,...m+r andj =0,...,n+ s The numbers
ands give how often a degree elevation has to be applied to
the variables; andx,.

k=max0,i —r) l=max0,j — s) (

3.2. Addition and subtraction

The sum or difference of two multivariate polynomials
f(x) andg(x) in Bernstein form can be obtained in a similar
way to the univariate case. If both polynomials have the
same maximum degrdd in x then the new coefficients of
the resulting Bernstein-form polynomia{x) are given by
the sum or difference of the corresponding coefficient sets:

HK:F| iGJ (5)

whereF contains the Bernstein coefficientsf@k) andG of
g(x).

If the polynomials do not have the same maximum
degree,N degree elevations (see Section 3.1) have to be
done beforeharfdand then Eq. (5) can be used.

2 Note that it might be necessary to elevate the degrees of both multi-
variate Bernstein-form polynomials because one may have a higher in, say,
X1, and the other in, say, at the same time.
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3.3. Multiplication

The product of two multivariate Bernstein-form polyno-
mialsf (x) with maximum degre®& andg(x) with maximum
degreeN, is a new Bernstein-form polynomidi(x). This
new polynomialh(x) has a maximum degree 0f = N; +
N,. The Bernstein coefficientsi¢” for h(x) can be calcu-
lated by

HI<<N=Nf+Ng) _ Z L K—-L F(LNf)GE(NE)L

= N; + Ng
K

where F and G contain the Bernstein coefficients of
the polynomials (x) andg(x). The setS" is given byS' =
{I': 1=max0,K = Ny), ..., min(N;, K)} and K € S,eyy =
{1:1=0,....(Ns + Np)}.

For two bivariate polynomials in Bernstein fori(xy, X,)
andg(xy, %) this formula can be rewritten as

©)

g min(m,a) min(n,b)
H i =
ab

I=max0,a— p) k=max0,b —q)

L)) .
") )

wherem, n, p andq are, respectively, the maximum degrees
of the polynomialsf (xq, X)) andg(xy, Xo).

3.4. Division

Farouki and Rajan [4] showed that the division of two

A). If these bounds are used a division of two multivariate
Bernstein-form polynomials can be formulated.

For the polynomiald (x) and g(x) the sets of Bernstein
coefficients are given b™Mz--M) gnd GMNz--N) where
(m,M,, ..., M)) and(n,N,, ...,N)) are the maximum degree
of the polynomials inx. Let x; be the main variable that
has a maximum degree of in the polynomialf(x) and
n in the polynomialg(x) and for which the condition
m=n is satisfied. By using the bounds given the
coefficient set for the quotient polynomial is given by
QMMM +No.... (=M +N) a0 the coefficient set for the
remainder polynomial i& " 1M MM Nz M=+ DM N

The relation in Eq. (7) can be expressed as

F(m,Mz,...,M,) — Q(m—n,(m—n)M2+N2,...,(m—n)M|+N|)G(n,N2 ..... N)
4 RM-LM=N+ DM+ Ny, (m=n+ DM +N)
— (QG)M(M—MWMz+2Nz....(m=1)M; +2N)
4 R LM+ DM+ N, (m=nt DM 4N

As said above, for addition of two multivariate Bernstein-
form polynomials it is necessary that the polynomials have
the same maximum degree in each variable. For the equa-
tion above, this means that for the coefficient @Gj a
(0,M,, ..., M))-times degree elevation ik and for R an
(m—n+ 1 N,,...,N)-times degree elevation ir has to
be performed. Obviously, the sum of the Bernstein coeffi-
cient setsQG) andR leads to the same degree in the main
variable but to a much higher degree in the other variables.
Therefore a (0,(m— nN)M, + 2N,, ...,(m — nN)M, + 2N))-
times degree elevation for the Bernstein coefficientFset
has to be determined, too.

The system of equations for the division of the two multi-
variate Bernstein-form polynomials can be created by the

univariate Bernstein-form polynomials leads to a system of following relation:

equations that has to be solved. The division of two multi-
variate Bernstein-form polynomials can also be performed
by solving a system of equations. However, in this case the

system is more complicated than in the univariate case.

If the multivariate Bernstein-form polynomidi(x) is
divided by g(x) the quotient and remainder polynomial
g(x) andr(x) in Bernstein form have to satisfy following
condition:

f(x) = a0)g(x) + r(x). @)

To divide two multivariate Bernstein-form polynomials a

main variable has to be chosen first and then the division is

performed for this main variable.

(o) ())

LJ\K-L) o, L J\K - L,

Lgs; <D1+El) FLI_LES‘; (D2+Ez)
K K
()

vy S e g ©®)

= (D3 + E3)
K

where the multi-indeXK € Sy = {1 : | = (O, ..., (M, ..,

(QG)Y?

Whereas in the univariate case the degrees of the quotienim — n + 1)M, + 2N))}. The multi-indicesg; = (0, (m —
and remainder polynomials are well defined, in the multi- n) My + 2N,, ...,(m— nN)M, + 2N,, E; = (0, M,, ..., M,) and

variate case the exact degrees of these two polynonjials
andr(x) are only well known for the main variable (see
Berchtold [11]). However, it is possible to give upper

Es=(m-n+1,N,,...,N)) give the degree elevation. The
degrees of the coefficient sets are given by the multi-indices
Dl = (m, M2, ---M|), D2 = (m, (m - n)Mz + 2N2, e

bounds for the degrees of the other variables (see Appendixim—n) M, + 2N;) and Dz=(n—1,(m—n+ )M, +
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No,...,(m—n+ 1M, + N)). The three different sets of By using the bounds for the maximum degrees given in
multi-indices are of the forng; = {l : | = max0,K — Appendix A the coefficient matrix of the quotieqtx;, x»)
E),... minD,K)}, S ={l:1 =max0,K — E,)) , ..., and remainder(xy, X,) have the following form:
min(D,,K)} and S = {I: | = max0,K — Eg) ,...,
min(D3, K)}. 12 (G0 Go1 Qo2

Note that for the multiplication of the coefficient séjs Q= tho Gi1 Gor

and G, Formula 6 for the multiplication of multivariate
Bernstein-form polynomials has to be applied and

(QG)I((m(mfn)MerZNz,...,(mfn)M|+2N‘) R03 _ (roo for Top l‘03).
D, )( D, ) If the Bernstein multiplication fo® andG is determined,
K

( L L the product QG) has the following initial form:

QDIGDZ_
LeS (D1+ DZ) Lot — oo — 2001 — 2002 0
K QG2 = —3010 00— 3011 3001 — 10 2002
whereK € Sy ={! : I=(M (M= NMM; + 2N,, ....,(m—n) 0 1010 201 O21
M, + 2N))}. The multi-indicesD; = (m — n,(m— n)M, +
Ny, ...,(Mm—nmM, + N)) and D, =(n,N,,...,N;) contain For this product a degree elevation has to be performed
the maximum degree of the polynomiadgx) and g(x). which leads to this matrix:
Coo %%o - %%1 %%1 - %%2 %%2 0
QG =| o 210~ LG~ 1 HGo+ 2001~ 20— H0n 0o+ 30— idn  ddn
0 La10 2010+ 300 1o+ 2an O21
The set S" is given as S'={l: | =max0,K — After an(m — n + 1)-times degree elevation in the main
D,), ...,,min(Dq, K)}. variable and anN-times degree elevation in the other

variable the coefficient matriR has the following form:

3.5. Example , ,
_ o oo 2Too+ 3Tor 3Tor+ 3fo2 3rop+ %ro3 ros
The following example demonstrates the division ofthe poa _ | 1, 3. 1. 1, 3. L1,
two Bernstein-form polynomials derived in the examples of 00 47007 270l 27017 2702 47027 2703 03

power-to-Bernstein conversion above. The main variable of foo %Too+ 3for 3Tor+ 3To2 3fo2+ %Moz Tos
the division isx;. The polynomialdf(x,, X,) andbg(Xy, %)
are given by For the matrixF an((m — n)M + N)-times degree eleva-
5 tion has to be performed which gives
bf (X1, %) = 3(1 — X)) (1 — %)
3% 1 %o
+3(2x% (1 — X)(L — %) + (L — %) i la 1 7 s g
4 2 4
+4(1 - X1)2X2 + 4(2X1(1 - Xl)XZ) + SX%XZ 3 % 4 % 5
ba(xs, %) = —1(1 — X)(L — Xp) + X1 Xo. This leads to the following system of equations which has
- . . . to be solved
The coefficient matrix of polynomiabf(x;, x,) is given
by 3= —0oo * oo
3 4
i_| 3 4 L= —logo— 1001+ 2roo+ 3ros
3 5 2 ="%%:1— %2+ 301t 3T02
and for the polynomiabg(x;, X,) the coefficient matrix is
15 _1 3 1
7 = 2002t FTo2 1 4T03

Gllz(_l %),
O 1 4:r03
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3= —30o+ oo

13 _ 1 1 1 1 3
% = 5%0— §010— 7012 T %Too T 7T01

7 _ 1 1n _ 1pq . _ 1 1 1
5= %071 5001 — 5011 — 5%1 T 5Mo1+ 5T02

1 1 1 3 1
2001t 5002 — §%21 — Ffo2t %T03

7 _ 1 1 3
5= 2010t 3To0t 401

_ 1 1 1 1
=500t 3011t 301+ 3T02

9 _ 1 1 3 1
5 =501 t% 3021+ 302+ 2T03

5=0p1 + ro3

The solution of this system of equations is given by

Go=0, Go1=1%, Go2=0, U;p=0, 1 =1 gy =1,

_ _1u _1u _
roo=3, fo1= 3, l2= 3, lz=4

Therefore the coefficient matrice® and R for the
quotientq(xy, Xo) and remainder(xy, X,) are given by

Q12:(O 2 0)
0 1 1

and

R03=(3 1

u Q.

wls
B

4. Partial derivatives

The derivative of a univariate Bernstein polynomial

defined on the unit interval [0,1] is given by
d
.

where by conventioli(x;) = 0 if k<0 ork > n.

Br(x)) = N[BR_1(x) — By *(xp)l,  k=0,1,...n

For thelth multivariate Bernstein polynomial of degree

N, which is defined on the unit bo¥ = [0, 1]', the partial

derivatives forx are obtained by

_BI xX) = nl[Bnl

.
o 1) — B

L)1+ Bl (%),

a n n n—
= 5ZW®=%WﬂﬂBMW)BﬁWM
x € [0,1]".

where by conventioBy(x) = 0 if k < 0 ork > n.

5. Computational load

The examples show that for the Bernstein-form poly-
nomials most of the coefficients are non-zero even if most
of the coefficients of the equivalent power-form polynomial
are zero. This, in general, means that a Bernstein-form poly-
nomial has a larger number of terms (see also our report [7]).
In this Section the amount of arithmetic that is involved if
the different operations are applied to Bernstein-form and
power-form polynomials is compared. The worst case situa-
tions are considered. Note that in these cases both represen-
tations have the same number of terms and all the
coefficients are non-zero.

For the following comparison tables the number of
variables inx is three as this is the most common require-
ment for geometric modelling. Since the computational
time is almost the same for all the different arithmetic
operations no distinction between an addition and multi-
plication is made for the numbers given in the comparison
tables. In all the given formulae a factor calculated from
different binomial coefficients is necessary. We assume
that a look-up table is used for the calculation of the
binomial coefficients (which always involve seven multi-
plications and one division); this number of operations is
not included in the number given in the comparison
tables.

Two multivariate polynomialg(x) andg(x) are consid-
ered. The maximum degrees of these polynomials are given
by Ni = (nf, n?, ) andN, = (ng, ng, ng), respectively. The
maximum number of coefficients for the two polynomlals
is u= (nf + 1)(nf + 1)(nf +1) and v= (ng + 1)(ng
1)(ng + 1). The multivariate polynomiah(x) is the result
if one arithmetic operation is applied to the two
polynomials. Obviously, the maximum degrell,=
(n&, 2, nP) of this polynomialh(x) depends on the arithmetic
operator applied td(x) and g(x). For the new polynomial
h(x) the number of the terms is given by= (n} + 1)(n2 +
(g + 1).

Maximum Number of
degree oh(x) operations for
Bernstein form Power form
E-times degree N, =N; + E w2u — 1) Does not exist
elevation
Addition/Subtraction N = max((N;,Ng) w+ w(2u — 1) w
+w(2v— 1)

Multiplication Np = N; + Ny w3u—1) 2uv—1

The arithmetic involved in a division is given in a second
table. Letxl € X be the main variable with a maximum
degree ofi and ng in f(x) andg(x), respectively. A multl—
variate polynomlal for the quot|erm;(x) W|th s=(n— g+
1)((nf - ng)nf + ng + 1)((m - ng)nf + ng +1) coefﬁments
and the remainde(x) with t= (ng 1+ 1)((nf - ng + 1)nf +
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Power form Bernstein form

=

7 7
s %
H

Fig. 1. Recursive division of the modelling volume. On the left—interval arithmetic applied to the power form: all the boxes might contain a pastfateae
On the right—interval arithmetic applied to the Bernstein form: boxes that only take a positive or negative value are detected, along with bayets that m
contain a part of the surface.

ng + V(W — ng + Dn? + ng + 1) coefficients is obtained. ~ would lead to a loss of the numerical properties and the
In this casew is the number of terms obtained by the robustness of the Bernstein form representation. To
multiplication of gq(x) and g(x). The maximum degrees of summarise: more numerical stability and robustness can
the polynomials involved aréD; + E;), (D, + E,) and be obtained by using the Bernstein basis at the cost of a
(D3 + Eg) and therefordd; + €;), (d, + &) and(d; + €3) greater computational load.

correspond to the number of coefficients (see also the If these algorithms are provided, the Bernstein form can
Section 3.4). be employed in set-theoretic geometric modellers. As said
in Section 1, these modellers sometimes use interval arith-
metic for the location of surfaces in space. In our paper [13]
experiments are given, which show that interval arithmetic

Number of operations for

Bernstein form Power form applied to Bernstein-form polynomials is more accurate for
- . . | surface location than for the power form.
Division (dy +e)2u—1) 2(n — ng + 1)(ng + 2) . . . .
+(dy + 6)2W3V — 1)) — 1) The following example (see Fig. 1) illustrates the result if
+(ds +e)(2t— 1) interval arithmetic and recursive division are used to locate

curves and surfaces in a box-shaped modelling volume. The

The number in the table gives only the arithmetic that will two methods are applied to a part of a degree-six polynomial
be involved in finding the system of equations. This system given in power form and its equivalent Bernstein fotm.
can be solved by using Gaussian elimination. In [12] the This polynomial was chosen as being typical of the more
computational load for Gaussian elimination is given: complicated shapes our set-theoretic geometric modeller
(U3N3 + (U2N?M + (U2)N?) (one addition + one svLis has to represent, such as blend surfaces. The power
multiplicatior) where N is the number of equations and form of the polynomial has the following equation and is
M the numbfr of unknownzs. Therefore another considered in the bops, 7] X [3, 4]
2(L/3)(dy + €)” + (U2)(dy + e)i(s + 1) + (U2)(dy + 24
e,)?) operations have to be performed to solve the system ofO = —32556( — 1948% + 3¢y" + 11842y + 6831
equations. _ 2 4 2 —and

The two tables show that the arithmetic for Bernstein- 2985¢y + 3x y2 13158 3060<y2 60x yz
form polynomials involves much more operations than for + 360<3y —18dy + 360<y3 — 30xy" + 606(2y2
the power form. However, to take advantage of the numer-
ical and geometrical robustness of the Bernstein poly- — 36x%y° + 35592— 18y° — 30x° — 1404/° — 2980¢
nomials it is necessary to avoid conversions between the
two representations, and this is the price that has to be paid. ~ + 399* + 20&"* + x® + y5.

The resulting boxes are labelled depending on their loca-
6. Conclusion tion: a blue box corresponds to a box for which the poly-
nomial only takes positive or negative values and a green
Section 5 showed that the polynomial arithmetic opera- hox corresponds to a box for which the returned interval
tions for the Bernstein form involve more computational straddles zero and therefore the box might contain a part
load. However, if the arithmetic for this representation is of the surface (that is, the zero of the polynomial).
not provided, a frequent conversion between the power and The picture on the right-hand side of Fig. 1 gives the
the Bernstein basis would be necessary. This, of course,
4 Note that additional information from the Bernstein form (such as the

% The numbers s and t are determined by the bounds for the maximum convex hull property) could be used to improve the box classifications
degree ofg(x) andr(x) (see Appendix A). further, but using this would not, of course, give a fair direct comparison.
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result if the Bernstein-form polynomial is used. In this case
the method returns a number of blue boxes for areas where
the polynomial takes only a negative or only a positive
value. The green coloured boxes give the region of the
modelling space where the surface might be located. For
the picture on the left-hand side the equivalent power-
form polynomial is used. The method returns only boxes
that might contain a part of the surface. Obviously in this

J. Berchtold, A. Bowyer / Computer-

Aided Design 32 (2000) 681-689

@gm "F=0aG+T

(b) dedr,x) < m;

(c) g is homogeneous ify, ....f,_; of degree 1;

(d) gis homogeneous igy, ..., O, of degreen — m — 1;
(e) F is homogeneous ify, ..., f,_; of degree 1;

(f) 7 is homogeneous igy, ..., g, of degreen — m.

Now takeq = gp, ™f,x"" ™ + gandr = f. Since the; are

example the surface location is more accurate if the homogeneous of degree 11y ... f, and homogeneous of

Bernstein-form polynomial is used.

degree 1 iy, ..., Oy, it now follows thatg andr satisfy the

The results of the given example and of our previous paper conditions.

[13] encourage the implementation of inbuilt Bernstein forms
into our set-theoretic geometric modelrLis (which we

make available free on the web [1]). The modification,
which involves providing an arithmetic for multivariate Bern-
stein-form polynomials, should automatically improve the

This proves the theorem.[J

Note that forn < m we have forq= 0 andr = F, that
F =qG +r and degr, x) < deqG, x).
The division in the theorem is callg@beudo-divisionqg is

accuracy of the location methods and therefore the robustnesgalled thepseudo-quotiersindr the pseudo-remainder

of the geometric representation itself.

Note that wherG is monic, i.eg,, = 1, the division in the

theorem is ordinary division.

Acknowledgements

If now fg, ..., f, are polynomials iry of degree=N and

Jos ---» Om are polynomials iry of degree=M we see that

The authors would like to thank the University of Bath for

hasy-degree= N + (n — mM andr hasy-degree= N +

supporting one of them (Berchtold) and Thom Mulders [14] (n — m + 1)M.

of ETH Zurich for providing the proof in Appendix A.

References

Appendix A. Appendix
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Theorem 1. Let n=m be non-negative integers angdf
f1, oufn 00, 01, ...0n  be indeterminates. Let £fx"+
f_ X"+ +fy and G=g X"+ gy X" 1 +---+go. Then
there are polynomials g& Z [X fo, ..., fn, 9o, ---Gn] such that

1. gh™F =qG+r;

2. degr,x) < m;

3. q is homogeneous ip.f..., f, of degree 1

4. q is homogeneous ing.., g, of degree n— m;

5. ris homogeneous inf... f, of degree 1

6. r is homogeneous ingg..., g, of degree - m+ 1
Proof. By induction ton — m. Let

F=goF +fxX""G

n—m

= (gm fn—l - 1:ngm—l)xn_1 + ot (gm 1:n—m - fngo)X

n-m-1 +

+gmfn—m—lx et gmf0~

In—m=0:Takeq=f, andr = F.

I n—m>0: Write F=f,_;x"1+ ...+ f, Using
our induction hypothesis orF and G (degF,x) —
degG) =n—m— 1) we know that there exist,ge
Z [ fo, -~fn-1,90. - "Oml such that
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