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Abstract

There are several ways to represent, to handle and to display curved surfaces in computer-aided geometric design that involve the use of
polynomials. This paper deals with polynomials in the Bernstein form. Other work has shown that these polynomials are more numerically
stable and robust than power-form polynomials. However, these advantages are lost if conversions to and from the customary power form are
made. To avoid this, algebraic manipulations have to be done in the Bernstein basis. Farouki and Rajan (R.T. Farouki, V.T. Rajan,
Algorithms for polynomials in Bernstein form, Computer Aided Geometric Design 5 (1988) 1–26) present methods for doing arithmetic
on univariate Bernstein-basis polynomials. This paper extends all polynomial arithmetic operations to multivariate Bernstein-form poly-
nomials.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

For the representation of curves and surfaces in compu-
ter-aided geometric design polynomials are almost always
used. For B-rep geometric modellers, the use of parametric
polynomials is often the most convenient. However, a more
familiar and, in certain respects, simpler representation of a
polynomial is the implicit power form. Some set-theoretic
geometric modellers make use of this surface representation
and employ interval arithmetic to locate an implicit surface
in space; this is an approximation to finding roots of the
polynomial (see, for example, Bowyer [1] or Snyder [2]).

An implicit power-form polynomial of degreen [ N in
the variablex is defined by:

p�x� �
Xn
k�0

akx
k
;

whereak [ R: The equationp�x� � 0 is the implicit equa-
tion corresponding to the polynomialp(x).

An equivalent representation ofp(x) can be given in terms
of the Bernstein form. For a givenn [ N the Bernstein
polynomials of degreen on the unit interval [0,1] are defined
by

Bn
k�x� �

n

k

 !
xk�1 2 x�n2k

; k � 0;1;…; n �1�

and the Bernstein form of the polynomialp(x) is

p�x� �
Xn
k�0

Pn
kBn

k�x�

wherePn
k are the corresponding Bernstein coefficients. The

conversion between the power- and Bernstein-form repre-
sentation is possible and can be performed regardless of the
number of variables (see below).

Farouki and Rajan argue in their papers [3,4] that the
Bernstein basis is numerically more stable and better condi-
tioned for finding roots than the power form. They also
recommend the use of Bernstein polynomials for a stable
implementation of geometric modelling algorithms. And, as
a consequence of this and a variety of other technical and
historical factors, the parametric Bernstein form is widely
used in B-rep modellers.

The use of the Bernstein form in set-theoretic geometric
modelling requires the manipulation of multivariate Bern-
stein-form polynomials directly if numerical accuracy and
stability are not to be lost. This paper introduces an arith-
metic for multivariate polynomials given in this representa-
tion and compares the computational load generated by the
same operations applied to power- and Bernstein-form poly-
nomials. All the algebra in this paper applies equally to both
parametric and implicit polynomials. Our own application
(the set-theoretic geometric modellersvLis [1]) uses the
latter, but everything below could just as easily be used
for parametric patches and the like.
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2. Bernstein polynomials

The Bernstein polynomials were introduced by S. Bern-
stein to give a very simple proof of Weierstrass’s approx-
imation theorem (see Lorentz [5]). Nowadays they are very
popular for generating Be´zier, B-spline or NURBS curves
and surfaces.

For a givenn [ N; the corresponding Bernstein poly-
nomials of degreen in a general interval� �x; �x� are defined by

Bn
k�x� �

n

k

 !
�x 2 �x�k� �x 2 x�n2k

� �x 2 �x�n ; k � 0; 1;…;n �2�

Sometimes it is more convenient to consider the Bern-
stein polynomials in a unit interval [0,1] as the region of
interest (see Eq. (1) for their definition). However, this is
not a real restriction because a bijection can always be
found, which maps the region of interest to the unit
interval.

The Bernstein polynomials have many properties that are
interesting for the geometric modelling. Lists of them are
given by Farouki and Rajan [3], and Spencer [6].

2.1. Conversion between power form and Bernstein form

The purpose of this paper is to present methods that
remove the need for power-form to Bernstein-form conver-
sion as much as possible. However, conversion is not always
avoidable and often has to be done at least once.

In our earlier report [7] a method is given for finding the
Bernstein form of a multivariate polynomial. Another
approach is given in the papers written by Garloff [8], and
Zettler and Garloff [9].

For this paper we have adopted the way of writing multi-
variate Bernstein-form polynomials used by Garloff and
other authors (e.g. Sherbrooke and Patrikalakis [10]), and
this is reproduced here as the notation will be used through-
out.

Let l [ N be the number of variables andx �
�x1;…; x1� [ Rl

: A multi-index I is defined as I �
�i1;…; il� [ Nl

: For two given multi-indicesI ; J [ Nl

we write I # J if 0 # i1 # j1;…;0 # i l # j l :

Notation: We setxI for a multiplication ofxi1
1
…xi1

l :

Notation: The multi-index0 only contains zeros.
Notation: The result ofI 1 J is a multi-indexK given by
k1 � i1 1 j1;…; kl � i l 1 j l :
Notation: The result ofI 2 J is a multi-indexK given by
k1 � i1 2 j1;…; kl � i l 2 j l :
Notation: We write

ÿ
I
J

�
for a multiplication of

ÿ
i1
j1

�
…
ÿ

il
jl

�
:

Notation: The minimum function min(I,J) returns a multi-
index K by takingk1 � min�i1; j1�;…; kl � min�i l ; j l�:
Notation: The maximum function max(I,J) returns a
multi-index K by taking k1 � max�i1; j1�;…; kl �
max�i l ; j l�:

Let p(x) be a multivariate polynomial inl variables with real
coefficients.

Definition. N � �n1;…;nl� is the multi-index of maxi-
mum degrees so thatnk is the maximum degree ofxk in p(x).

Definition. The setS� { I [ Nl : I # N} contains all the
combinations fromRl which are smaller than or equal to the
multi-indexN of maximum degree.

Then an arbitrary polynomialp(x) can be written as

p�x� �
X
I[S

aI x
I

where aI [ R represents the corresponding coefficient to
eachxI. (Note that some of theaI may be 0.)

As before a univariate Bernstein polynomial in the vari-
ablex of degreen on the unit interval [0,1] is defined by

Bn
k�x� �

n

k

 !
xk�1 2 x�n2k

; k � 0;1;…;n:

For the multivariate case we consider, without loss of gener-
ality,1 the unit boxU � �0;1�l and theIth Bernstein poly-
nomial of degreeN is defined by

BN
I �x� � Bn1

i1
�x1�…Bnl

il
�xl� x [ �0; 1�l :

The Bernstein coefficientsPI(U) of p(x) overU are given
by

PI �U� �
X
J#I

I

J

 !
N

J

 ! aJ I [ S: �3�

And so the Bernstein form of a multivariate polynomial
p(x) is defined by:

p�x� �
X
I[S

PI �U�BN
I �x�:

2.2. Examples

Example 1. A polynomial pg(x1,x2) in power form is
given by

pg�x1; x2� � x1 1 x2 2 1:

The maximum degree isN � �1;1� and the setS is

S� { �0;0��0;1��1;0��1; 1�} :
The Bernstein coefficients can be calculated by using

Eq. (3)

b�0;0� � 21 b�0;1� � 0

b�1;0� � 0 and b�1;1� � 1:

In this case the multivariate Bernstein polynomials are
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given by

B�11�
�00��x� � �1 2 x1��1 2 x2� and

B�11�
�01��x� � �1 2 x1�x2

B�11�
�10��x� � x1�1 2 x2� and B�11�

�11��x� � x1x2:

Therefore the Bernstein formbg(x1,x2) of the given poly-
nomial pg(x1,x2) is

bg�x1; x2� � 2�1 2 x1��1 2 x2�1 x1x2:

Example 2. A polynomialpf(x1,x2) in power form is given
by

pf�x1; x2� � x2
1x2 1 x2 1 3:

The multi-indexN is N � �2;1� and this yields to the
following setS:

S� { �0; 0��0;1��1;0��1;1��2; 0��2;1�} :
Using Eq. (3) gives the Bernstein coefficients:

b�0;0� � 3 b�0;1� � 4 b�1;0� � 3

b�1;1� � 4 b�2;0� � 3 andb�2;1� � 5:

The Bernstein polynomials are given by:

B�21�
�00��x� � �1 2 x1�2�1 2 x2� and

B�21�
�01��x� � �1 2 x1�2x2

B�21�
�10��x� � 2x1�1 2 x1��1 2 x2� and

B�21�
�11��x� � 2x1�1 2 x1�x2

B�21�
�20��x� � x2

1�1 2 x2� and B�21�
�21��x� � x2

1x2

The Bernstein formbf(x1,x2) of the polynomialpf(x1,x2)
is therefore

bf�x1; x2� � 3�1 2 x1�2�1 2 x2�

13�2x1�1 2 x1��1 2 x2��1 3x2
1�1 2 x2�

14�1 2 x1�2x2 1 4�2x1�1 2 x1�x2�1 5x2
1x2:

3. Arithmetic for multivariate Bernstein-form
polynomials

As mentioned above, if the stability of the Bernstein basis
is to be retained while polynomials are being manipulated
an arithmetic for Bernstein-form polynomials has to be
defined. In their paper [4] Farouki and Rajan give an arith-
metic for univariate Bernstein-form polynomials.

In this section an arithmetic for multivariate Bernstein-

form polynomials is derived. The resulting arithmetic rules
are more complicated than the ones for the univariate case.
For the following formulae the way of writing multivariate
Bernstein-form polynomials as shown in the last section is
adopted.

3.1. Degree elevation

A given multivariate Bernstein-form polynomialf (x) of
maximum degreeN has a non-trivial representation in a
Bernstein basis of higher degree (N 1 E). The numbers in
the multi-indexE are equivalent to the times a degree eleva-
tion has to be performed for thel variables ofx. The new
(N 1 E) Bernstein coefficientsF�N1E�

K can be obtained in the
following way:

F�N1E�
K �

X
L[Sp

N

L

 !
E

K 2 L

 !
N 1 E

K

 ! FL K [ Snew �4�

where the multi-index L [ Sp � { I : I � max�0;K 2
E�;…;min�N;K�} and K [ Snew� { I : I � 0;…; �N 1 E�} :

For a bivariate Bernstein-form polynomialf (x1,x2) of
degree (m,n) this formula can be rewritten in the following
manner:

F�m1r ;n1s�
i; j

�
Xmin�m;i�

k�max�0;i 2 r�

Xmin�n; j�

l�max�0; j 2 s�

 
m

k

! 
r

i 2 k

!
 

m1 r

i

!
 

n

l

! 
s

j 2 l

!
 

n 1 s

j

! Fk;l

where i � 0;…;m1 r and j � 0;…;n 1 s: The numbersr
andsgive how often a degree elevation has to be applied to
the variablesx1 andx2.

3.2. Addition and subtraction

The sum or difference of two multivariate polynomials
f (x) andg(x) in Bernstein form can be obtained in a similar
way to the univariate case. If both polynomials have the
same maximum degreeN in x then the new coefficients of
the resulting Bernstein-form polynomialh(x) are given by
the sum or difference of the corresponding coefficient sets:

HK � FI ^ GJ �5�
whereF contains the Bernstein coefficients off (x) andG of
g(x).

If the polynomials do not have the same maximum
degree,N degree elevations (see Section 3.1) have to be
done beforehand2 and then Eq. (5) can be used.
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3.3. Multiplication

The product of two multivariate Bernstein-form polyno-
mialsf (x) with maximum degreeNf andg(x) with maximum
degreeNg is a new Bernstein-form polynomialh(x). This
new polynomialh(x) has a maximum degree ofN � Nf 1
Ng: The Bernstein coefficientsH�N�K for h(x) can be calcu-
lated by

H
�N�Nf 1Ng�
K �

X
L[Sp

Nf

L

 !
Ng

K 2 L

 !
Nf 1 Ng

K

 ! F
�Nf �
L G

�Ng�
K2L �6�

where F and G contain the Bernstein coefficients of
the polynomialsf (x) andg(x). The setSp is given bySp �
{ I : I � max�0;K 2 Ng�;…;min�Nf ;K�} and K [ Snew�
{ I : I � 0;…; �Nf 1 Ng�} :

For two bivariate polynomials in Bernstein formf (x1,x2)
andg(x1,x2) this formula can be rewritten as

Hm1p;n1q
a;b �

Xmin�m;a�

l�max�0;a2 p�

Xmin�n;b�

k�max�0;b2 q�

×

 
m

l

! 
p

a 2 l

!
 

m1 p

a

!
 

n

k

! 
q

b 2 k

!
 

n 1 q

b

! Fm;n
l;k Gp;q

a2l;b2k

wherem, n, p andq are, respectively, the maximum degrees
of the polynomialsf (x1,x2) andg(x1,x2).

3.4. Division

Farouki and Rajan [4] showed that the division of two
univariate Bernstein-form polynomials leads to a system of
equations that has to be solved. The division of two multi-
variate Bernstein-form polynomials can also be performed
by solving a system of equations. However, in this case the
system is more complicated than in the univariate case.

If the multivariate Bernstein-form polynomialf (x) is
divided by g(x) the quotient and remainder polynomial
q(x) and r(x) in Bernstein form have to satisfy following
condition:

f �x� � q�x�g�x�1 r�x�: �7�
To divide two multivariate Bernstein-form polynomials a

main variable has to be chosen first and then the division is
performed for this main variable.

Whereas in the univariate case the degrees of the quotient
and remainder polynomials are well defined, in the multi-
variate case the exact degrees of these two polynomialsq(x)
and r(x) are only well known for the main variable (see
Berchtold [11]). However, it is possible to give upper
bounds for the degrees of the other variables (see Appendix

A). If these bounds are used a division of two multivariate
Bernstein-form polynomials can be formulated.

For the polynomialsf (x) and g(x) the sets of Bernstein
coefficients are given byF�m;M2;…;Ml � andG�n;N2;…;Nl � where
�m;M2;…;Ml� and �n;N2;…;Nl� are the maximum degree
of the polynomials inx. Let x1 be the main variable that
has a maximum degree ofm in the polynomialf (x) and
n in the polynomial g(x) and for which the condition
m$ n is satisfied. By using the bounds given the
coefficient set for the quotient polynomial is given by
Q�m2n;�m2n�M21N2;…;�m2n�Ml1Nl � and the coefficient set for the
remainder polynomial isR(n21,(m2n11)M21N2,…,(m2n11)Ml1Nl).

The relation in Eq. (7) can be expressed as

F�m;M2;…;Ml � � Q�m2n;�m2n�M21N2;…;�m2n�Ml 1Nl �G�n;N2;…;Nl �

1 R�n21;�m2n11�M21N2;…;�m2n11�Ml 1Nl �

� �QG��m;�m2n�M212N2;…;�m2n�Ml 12Nl �

1 R�n21;�m2n11�M21N2;…;�m2n11�Ml 1Nl �:

As said above, for addition of two multivariate Bernstein-
form polynomials it is necessary that the polynomials have
the same maximum degree in each variable. For the equa-
tion above, this means that for the coefficient set (QG) a
�0;M2;…;Ml�-times degree elevation inx and for R an
�m2 n 1 1;N2;…;Nl�-times degree elevation inx has to
be performed. Obviously, the sum of the Bernstein coeffi-
cient sets (QG) andR leads to the same degree in the main
variable but to a much higher degree in the other variables.
Therefore a �0; �m2 n�M2 1 2N2;…; �m2 n�Ml 1 2Nl�-
times degree elevation for the Bernstein coefficient setF
has to be determined, too.

The system of equations for the division of the two multi-
variate Bernstein-form polynomials can be created by the
following relation:

X
L1[Sp

1

 
D1

L1

! 
E1

K 2 L1

!
 

D1 1 E1

K

! FD1
L1
�

X
L2[Sp

2

 
D2

L2

! 
E2

K 2 L2

!
 

D2 1 E2

K

! �QG�D2
L2

1
X

L3[Sp
3

 
D3

L3

! 
E3

K 2 L3

!
 

D3 1 E3

K

! RD3
L3

(8)

where the multi-indexK [ Snew � { I : I � �0;…; �m;…;

�m2 n 1 1�Ml 1 2Nl�} : The multi-indicesE1 � �0; �m2
n�M2 1 2N2;…; �m2 n�Ml 1 2Nl ; E2 � �0;M2;…;Ml� and
E3 � �m2 n 1 1;N2;…;Nl� give the degree elevation. The
degrees of the coefficient sets are given by the multi-indices
D1 � �m;M2;…Ml�; D2 � �m; �m 2 n�M2 1 2N2;…;

�m2 n� Ml 1 2Nl� and D3 � �n 2 1; �m2 n 1 1�M2 1
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N2;…; �m2 n 1 1�Ml 1 Nl�: The three different sets of
multi-indices are of the formSp

1 � { I : I � max�0;K 2
E1� ;…; min�D1;K�} ; Sp

2 � { I : I � max�0;K 2 E2� ;…;

min�D2;K�} and Sp
3 � { I : I � max�0;K 2 E3� ;…;

min�D3;K�} :
Note that for the multiplication of the coefficient setsQ

and G, Formula 6 for the multiplication of multivariate
Bernstein-form polynomials has to be applied

�QG��m;�m2n�M212N2;…;�m2n�Ml 12Nl �
K

�
X

L1[Sp

D1

L

 !
D2

K 2 L

 !
D1 1 D2

K

 ! QD1
L GD2

K2L

whereK [ Snew�{ I : I��m; �m2 n�M2 1 2N2;…; �m2 n�
Ml 1 2Nl�} : The multi-indicesD1 � �m2 n; �m2 n�M2 1
N2;…; �m2 n�Ml 1 Nl� and D2 � �n;N2;…;Nl� contain
the maximum degree of the polynomialsq(x) and g(x).

The set Sp is given as Sp � { I : I � max�0;K 2
D2�;…;min�D1;K�} :
3.5. Example

The following example demonstrates the division of the
two Bernstein-form polynomials derived in the examples of
power-to-Bernstein conversion above. The main variable of
the division isx1. The polynomialsbf�x1; x2� andbg�x1; x2�
are given by

bf�x1; x2� � 3�1 2 x1�2�1 2 x2�

13�2x1�1 2 x1��1 2 x2��1 3x2
1�1 2 x2�

14�1 2 x1�2x2 1 4�2x1�1 2 x1�x2�1 5x2
1x2

bg�x1; x2� � 21�1 2 x1��1 2 x2�1 x1x2:

The coefficient matrix of polynomialbf�x1; x2� is given
by

F21 �
3 4

3 4

3 5

0BB@
1CCA

and for the polynomialbg�x1; x2� the coefficient matrix is

G11 �
21 0

0 1

 !
:

By using the bounds for the maximum degrees given in
Appendix A the coefficient matrix of the quotientq�x1; x2�
and remainderr�x1; x2� have the following form:

Q12 �
q00 q01 q02

q10 q11 q21

 !

and

R03 � � r00 r01 r02 r03 �:
If the Bernstein multiplication forQ andG is determined,

the product (QG) has the following initial form:

�QG�23 �
2q00 2 2

3 q01 2 1
3 q02 0

2 1
2 q10

1
6 q00 2 1

3 q11
1
3 q01 2 1

6 q21
1
2 q02

0 1
3 q10

2
3 q11 q21

0BBB@
1CCCA

For this product a degree elevation has to be performed
which leads to this matrix:

After an �m2 n 1 1�-times degree elevation in the main
variable and anN-times degree elevation in the other
variable the coefficient matrixR has the following form:

R24 �
r00

1
4 r00 1 3

4 r01
1
2 r01 1 1

2 r02
3
4 r02 1 1

4 r03 r03

r00
1
4 r00 1 3

4 r01
1
2 r01 1 1

2 r02
3
4 r02 1 1

4 r03 r03

r00
1
4 r00 1 3

4 r01
1
2 r01 1 1

2 r02
3
4 r02 1 1

4 r03 r03

0BBB@
1CCCA

For the matrixF an��m2 n�M 1 N�-times degree eleva-
tion has to be performed which gives

F24 �
3 13

4
7
2

15
4 4

3 13
4

7
2

15
4 4

3 7
2 4 9

2 5

0BBB@
1CCCA

This leads to the following system of equations which has
to be solved

3� 2q00 1 r00

13
4 � 2 1

4 q00 2 1
2 q01 1 1

4 r00 1 3
4 r01

7
2 � 2 1

3 q01 2 1
6 q02 1 1

2 r01 1 1
2 r02

15
4 � 2 1

4 q02 1 3
4 r02 1 1

4 r03

4� r03
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�QG�24 �
q00

1
4 q00 2 1

2 q01
1
3 q01 2 1

6 q02
1
4 q02 0

1
2 q10

1
8 q00 2 1

8 q10 2 1
4 q11

1
12 q00 1 1

6 q01 2 1
6 q11 2 1

12 q21
1
4 q01 1 1

8 q02 2 1
8 q21

1
2 q02

0 1
4 q10

1
6 q10 1 1

3 q11
1
2 q11 1 1

4 q21 q21

0BBB@
1CCCA



3� 2 1
2 q10 1 r00

13
4 � 1

8 q00 2 1
8 q10 2 1

4 q11 1 1
4 r00 1 3

4 r01

7
2 � 1

12 q00 1 1
6 q01 2 1

6 q11 2 1
12 q21 1 1

2 r01 1 1
2 r02

15
4 � 1

4 q01 1 1
8 q02 2 1

8 q21 2 3
4 r02 1 1

4 r03

4� 1
2 q02 1 r03

3� r00

7
2 � 1

4 q10 1 1
4 r00 1 3

4 r01

4� 1
6 q10 1 1

3 q11 1 1
2 r01 1 1

2 r02

9
2 � 1

2 q11 1 1
4 q21 1 3

4 r02 1 1
4 r03

5� q21 1 r03

The solution of this system of equations is given by

q00 � 0; q01 � 1
2 ; q02 � 0; q10 � 0; q21 � 1; q11 � 1;

r00 � 3; r01 � 11
3 ; r02 � 11

3 ; r03 � 4:

Therefore the coefficient matricesQ and R for the
quotientq�x1; x2� and remainderr�x1; x2� are given by

Q12 � 0 1
2 0

0 1 1

 !
and

R03 � 3 11
3

11
3 4

� �
:

4. Partial derivatives

The derivative of a univariate Bernstein polynomial
defined on the unit interval [0,1] is given by

d
dx1

Bn
k�x1� � n�Bn21

k21�x1�2 Bn21
k �x1��; k � 0;1;…;n

where by conventionBn
k�x1� ; 0 if k , 0 or k . n:

For theIth multivariate Bernstein polynomial of degree
N, which is defined on the unit boxU � �0; 1�l ; the partial
derivatives forx are obtained by

2

2x1
BN

I �x� � n1�Bn121
i121 �x1�2 Bn121

i1
�x1��…Bnl

il
�xl�;

…�… 2

2xl
BN

I �x� � Bn1
i1
�x1�…nl�Bnl21

i l21 �xl�2 Bnl21
i l
�xl��;

x [ �0;1�l :

where by conventionBn
k�xl� ; 0 if k , 0 or k . n:

5. Computational load

The examples show that for the Bernstein-form poly-
nomials most of the coefficients are non-zero even if most
of the coefficients of the equivalent power-form polynomial
are zero. This, in general, means that a Bernstein-form poly-
nomial has a larger number of terms (see also our report [7]).
In this Section the amount of arithmetic that is involved if
the different operations are applied to Bernstein-form and
power-form polynomials is compared. The worst case situa-
tions are considered. Note that in these cases both represen-
tations have the same number of terms and all the
coefficients are non-zero.

For the following comparison tables the number of
variables inx is three as this is the most common require-
ment for geometric modelling. Since the computational
time is almost the same for all the different arithmetic
operations no distinction between an addition and multi-
plication is made for the numbers given in the comparison
tables. In all the given formulae a factor calculated from
different binomial coefficients is necessary. We assume
that a look-up table is used for the calculation of the
binomial coefficients (which always involve seven multi-
plications and one division); this number of operations is
not included in the number given in the comparison
tables.

Two multivariate polynomialsf (x) andg(x) are consid-
ered. The maximum degrees of these polynomials are given
by Nf � �n1

f ; n
2
f ;n

3
f � andNg � �n1

g;n
2
g;n

3
g�; respectively. The

maximum number of coefficients for the two polynomials
is u� �n1

f 1 1��n2
f 1 1��n3

f 1 1� and v� �n1
g 1 1��n2

g 1
1��n3

g 1 1�: The multivariate polynomialh(x) is the result
if one arithmetic operation is applied to the two
polynomials. Obviously, the maximum degreeNh�
�n1

h;n
2
h;n

3
h� of this polynomialh(x) depends on the arithmetic

operator applied tof (x) and g(x). For the new polynomial
h(x) the number of the terms is given byw� �n1

h 11��n2
h 1

1��n3
h 11�:

Maximum
degree ofh(x)

Number of
operations for

Bernstein form Power form

E-times degree
elevation

Nh � Nf 1 E w�2u 2 1� Does not exist

Addition/Subtraction Nh�max(Nf,Ng) w 1 w(2u2 1)
1 w(2v 2 1)

w

Multiplication Nh � Nf 1 Ng w�3u 2 1� 2uv2 1

The arithmetic involved in a division is given in a second
table. Letx1 [ x be the main variable with a maximum
degree ofn1

f andn1
g in f (x) andg(x), respectively. A multi-

variate polynomial for the quotientq(x) with s ��n1
f 2n1

g1
1���n1

f 2 n1
g�n2

f 1 n2
g 1 1���n1

f 2 n1
g�n3

f 1 n3
g 1 1� coefficients

and the remainderr(x) with t��n1
g2111���n1

f 2 n1
g 1 1�n2

f 1
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n2
g 1 1���n1

f 2 n1
g 1 1�n3

f 1 n3
g 1 1� coefficients3 is obtained.

In this casew is the number of terms obtained by the
multiplication of q(x) and g(x). The maximum degrees of
the polynomials involved are�D1 1 E1�; �D2 1 E2� and
�D3 1 E3� and therefore�d1 1 e1�; �d2 1 e2� and �d3 1 e3�
correspond to the number of coefficients (see also the
Section 3.4).

Number of operations for

Bernstein form Power form

Division �d1 1 e1��2u 2 1�
1�d2 1 e2��2�w�3v 2 1��2 1�
1�d3 1 e3��2t 2 1�

2�n1
f 2 n1

g 1 1��n1
g 1 2�

The number in the table gives only the arithmetic that will
be involved in finding the system of equations. This system
can be solved by using Gaussian elimination. In [12] the
computational load for Gaussian elimination is given:
��1=3�N3 1 �1=2�N2M 1 �1=2�N2� (one addition 1 one
multiplication) where N is the number of equations and
M the number of unknowns. Therefore another
2��1=3��d1 1 e1�3 1 �1=2��d1 1 e1�2�s 1 t� 1 �1=2��d1 1
e1�2� operations have to be performed to solve the system of
equations.

The two tables show that the arithmetic for Bernstein-
form polynomials involves much more operations than for
the power form. However, to take advantage of the numer-
ical and geometrical robustness of the Bernstein poly-
nomials it is necessary to avoid conversions between the
two representations, and this is the price that has to be paid.

6. Conclusion

Section 5 showed that the polynomial arithmetic opera-
tions for the Bernstein form involve more computational
load. However, if the arithmetic for this representation is
not provided, a frequent conversion between the power and
the Bernstein basis would be necessary. This, of course,

would lead to a loss of the numerical properties and the
robustness of the Bernstein form representation. To
summarise: more numerical stability and robustness can
be obtained by using the Bernstein basis at the cost of a
greater computational load.

If these algorithms are provided, the Bernstein form can
be employed in set-theoretic geometric modellers. As said
in Section 1, these modellers sometimes use interval arith-
metic for the location of surfaces in space. In our paper [13]
experiments are given, which show that interval arithmetic
applied to Bernstein-form polynomials is more accurate for
surface location than for the power form.

The following example (see Fig. 1) illustrates the result if
interval arithmetic and recursive division are used to locate
curves and surfaces in a box-shaped modelling volume. The
two methods are applied to a part of a degree-six polynomial
given in power form and its equivalent Bernstein form.4

This polynomial was chosen as being typical of the more
complicated shapes our set-theoretic geometric modeller
svLis has to represent, such as blend surfaces. The power
form of the polynomial has the following equation and is
considered in the box�5;7� × �3; 4�
0� 232556x 2 19487y 1 3x2y4 1 11842xy1 6831y2

2 2985x2y 1 3x4y2 1 13158x2 2 3060xy2 2 60x3y2

1 360x3y 2 18x4y 1 360xy3 2 30xy4 1 606x2y2

2 36x2y3 1 355922 18y5 2 30x5 2 1404y3 2 2980x3

1 399x4 1 207y4 1 x6 1 y6
:

The resulting boxes are labelled depending on their loca-
tion: a blue box corresponds to a box for which the poly-
nomial only takes positive or negative values and a green
box corresponds to a box for which the returned interval
straddles zero and therefore the box might contain a part
of the surface (that is, the zero of the polynomial).

The picture on the right-hand side of Fig. 1 gives the
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Fig. 1. Recursive division of the modelling volume. On the left—interval arithmetic applied to the power form: all the boxes might contain a part of thesurface.
On the right—interval arithmetic applied to the Bernstein form: boxes that only take a positive or negative value are detected, along with boxes that might
contain a part of the surface.

3 The numbers s and t are determined by the bounds for the maximum
degree ofq(x) andr(x) (see Appendix A).

4 Note that additional information from the Bernstein form (such as the
convex hull property) could be used to improve the box classifications
further, but using this would not, of course, give a fair direct comparison.



result if the Bernstein-form polynomial is used. In this case
the method returns a number of blue boxes for areas where
the polynomial takes only a negative or only a positive
value. The green coloured boxes give the region of the
modelling space where the surface might be located. For
the picture on the left-hand side the equivalent power-
form polynomial is used. The method returns only boxes
that might contain a part of the surface. Obviously in this
example the surface location is more accurate if the
Bernstein-form polynomial is used.

The results of the given example and of our previous paper
[13] encourage the implementation of inbuilt Bernstein forms
into our set-theoretic geometric modellersvLis (which we
make available free on the web [1]). The modification,
which involves providing an arithmetic for multivariate Bern-
stein-form polynomials, should automatically improve the
accuracy of the location methods and therefore the robustness
of the geometric representation itself.
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Appendix A. Appendix

The induction proof of the following theorem was kindly
provided by Mulders [14].

Theorem 1. Let n$ m be non-negative integers and x; f0;
f1;…; fn;g0;g1;…gm be indeterminates. Let F�fnxn1
fn21xn211…1f0 and G�gmxm1gm21xm211…1g0: Then
there are polynomials q,r[ Z– �x; f0;…; fn; g0;…gm� such that

1. gn2m11
m F � qG1 r;

2. deg�r ; x� , m;

3. q is homogeneous in f0;…; fn of degree 1;
4. q is homogeneous in g0;…;gm of degree n2 m;

5. r is homogeneous in f0;…; fn of degree 1;
6. r is homogeneous in g0;…; gm of degree n2 m1 1

Proof. By induction ton 2 m: Let

~F � gmF 1 fnxn2mG

� �gm fn21 2 fngm21�xn21 1 …1 �gm fn2m 2 fng0�xn2m

1gm fn2m21xn2m21 1 …1 gm f0:

I n 2 m� 0 : Takeq� fn andr � ~F:
II n 2 m . 0 : Write ~F � ~f n21xn21 1 …1 ~f 0: Using
our induction hypothesis on~F and G �deg� ~F; x�2
deg�G� � n 2 m2 1� we know that there exist q˜,r̃ [
Z– �x; ~f 0;…~f n21;g0;…gm� such that

(a) gn2m
m

~F � ~qG1 ~r ;
(b) deg�~r ; x� , m;

(c) ~q is homogeneous in~f 0;…; ~f n21 of degree 1;
(d) ~q is homogeneous ing0;…;gm of degreen 2 m2 1;
(e) ~r is homogeneous in~f 0;…; ~f n21 of degree 1;
(f) ~r is homogeneous ing0;…;gm of degreen 2 m:

Now takeq� gn2m
m fnxn2m 1 ~q andr � ~r : Since the~f i are

homogeneous of degree 1 inf0;…; fn and homogeneous of
degree 1 ing0;…;gm it now follows thatq andr satisfy the
conditions.

This proves the theorem.A

Note that forn , m we have forq� 0 andr � F; that
F � qG1 r and deg�r ; x� , deg�G; x�:

The division in the theorem is calledpseudo-division, q is
called thepseudo-quotientandr the pseudo-remainder.

Note that whenG is monic, i.e.gm � 1; the division in the
theorem is ordinary division.

If now f0;…; fn are polynomials iny of degree#N and
g0;…; gm are polynomials iny of degree#M we see thatq
hasy-degree# N 1 �n 2 m�M and r hasy-degree# N 1
�n 2 m1 1�M:
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