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Abstract

This paper compares the performance and efficiency of different function range interval methods for plotting
f (x, y)= 0 on a rectangular region based on a subdivision scheme, wheref (x, y) is a polynomial. The solution of
this problem has many applications in CAGD. The methods considered are interval arithmetic methods (using the
power basis, Bernstein basis, Horner form and centred form), an affine arithmetic method, a Bernstein coefficient
method, Taubin’s method, Rivlin’s method, Gopalsamy’s method, and related methods which also take into account
derivative information. Our experimental results show that the affine arithmetic method, interval arithmetic using
the centred form, the Bernstein coefficient method, Taubin’s method, Rivlin’s method, and their related derivative
methods have similar performance, and generally they are more accurate and efficient than Gopalsamy’s method
and interval arithmetic using the power basis, the Bernstein basis, and Horner form methods. 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Implicit curves are extremely useful in geometric modelling, especially in CSG, and also for trimming
operations on parametrically described shapes. They can represent, for example, the intersection of two
parametric surfaces inR3, or the silhouette edges of a parametric surface inR3 with respect to a given
view (Snyder, 1992).
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Tracing the implicit curvef (x, y)= 0 in a rectangular region[x, x]× [y,y], wheref is a polynomial
in two variables, is of great interest in CAD, CAGD and computer graphics. We consider here as an
example the problem of drawing the curve on a rectangular grid of pixels, but the same methods can be
used at a higher resolution for many other applications.

A straightforward solution to the implicit curve plotting problem is to exhaustively test whether the
curve passes through each pixel. Such a test can be performed by evaluating the approximate Euclidean
distance from the center of each pixel to the curve (Taubin, 1994a) or by point sampling (de Figueiredo
and Stolfi, 1996). Clearly such methods are not efficient.

Continuation methods (Chandler, 1988) are usually efficient because they use one or more seed pixels
on a curve and then trace the curve continuously. However these methods have one fundamental difficulty,
that of finding a complete set of initial seed pixels.

Subdivision methods (Duff, 1992; Snyder, 1992; Suffern, 1990; Suffern and Fackerell, 1991; Taubin,
1994a, 1994b) start with the plot area itself as an initial cell. If a cell is proved to be empty, it is ignored;
otherwise, it is subdivided into smaller cells, which are then visited recursively, until the cells reach pixel
size (or a desired accuracy). In this way large portions of the plot area can be discarded quickly and
reliably at an early stage, again leading to efficient methods.

Range analysis (Ratschek and Rokne, 1984) provides a general test procedure for reliably rejecting
certain cells at each subdivision step. In range analysis, a conservative interval is computed for the range
of function values within a cell. If this interval does not contain zero, then the curve does not intersect
the cell. However, if the interval does contains zero, we cannot conclude that the cell intersects the curve
because the function range interval is not required to be exact. Therefore the cell must be subdivided
for further investigation. In the approach we take in this paper, once the cells reach pixel size, we stop
further analysis (although in principle, a pixel may be further subdivided into subpixels), and just plot
the cell as if the curve passed through it. This may result in a “fat” curve, as some plotted pixels do not
actually contain the curve—the curve is fatter than it should be. This is clearly unacceptable for certain
applications, which may prefer to approximate the curve in some other way in pixel-sized cells.

The classical technique of interval arithmetic (IA) (Moore, 1966, 1979) provides a natural tool for
range analysis (Ratschek and Rokne, 1984); an overview is given in Section 3.1. Subdivision methods
based on IA have been proposed for rasterization of implicit curves and surfaces in computer graphics
applications (Duff, 1992; Snyder, 1992; Suffern and Fackerell, 1991). IA also has been used in computer
graphics applications such as fast ray tracing and robust solid modelling (Barth et al., 1994; Hu et al.,
1996a, 1996b).

Because of the way arithmetic operators work in IA (for example, the distributive law no longer
holds), the form used to express the polynomialf (x, y) affects the range for the function output by
an IA evaluation. A previous paper (Voiculescu et al., 2000) showed that IA using the Bernstein basis
is generally more accurate than IA using the power basis. In the current paper two other polynomial
forms—Horner form and centred form are added for comparison, in addition to other approaches we also
consider.

The main weakness of IA is that it tends to be too conservative (Comba and Stolfi, 1993; de Figueiredo,
1996; de Figueiredo and Stolfi, 1996), i.e., the range output for the function by IA is sometimesmuch
wider than the actual range of values the function takes over a given interval. To solve this problem,
Comba and Stolfi (1993) proposed a new model for numerical computation, called affine arithmetic
(AA); an overview is given in Section 3.2. AA has been used as a replacement for IA in various
computer graphics applications, such as ray tracing, intersection testing, enumeration of implicit curves
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and surfaces, and sampling for procedural shaders (Comba and Stolfi, 1993; de Figueiredo, 1996; de
Figueiredo and Stolfi, 1996; Heidrich et al., 1998). As AA usually computes tighter intervals than IA, it
is possible to draw algebraic curves using AA more efficiently and with higher quality than using IA (de
Figueiredo and Stolfi, 1996; Zhang and Martin, 2000). However AA is still too conservative sometimes,
and it does not obey the distributive law either. To solve these problems, in this paper we use a modified
Matrix AA (MAA) method proposed in (Shou et al., 2002).

Another well known method for range analysis is the Bernstein coefficient (BC) method based on the
Bernstein convex hull property (Farin, 1993). This method relies on the simple idea that if a polynomial
is written in the Bernstein basis, the range of the polynomial is bounded by the values of the minimum
and maximum Bernstein coefficients. A modification of this method elevates the degree of the Bernstein
polynomials before using the coefficients to find the range. It is known that as the degree is elevated, the
bounds become tighter, but an additional computational cost is involved (Farin, 1993).

Based on a simple polynomial inequality, Taubin (1994b) introduced a test that is a sufficient condition
for a polynomial in two variables to not have roots inside a box. His approach is a particularly efficient
way to construct inclusion functions for polynomials.

A further method for bounding the range of a polynomial over an interval for the univariate case by
Cargo and Shisha (1966) and Rivlin (1970) is based on a simple estimate of the second derivative in a
Taylor expansion of the polynomial. Garloff (1985) extended the idea to the bivariate case. The bounds
are found from the values of the polynomial at points of a regular grid subdividing the unit square.

Gopalsamy et al. (1991) proposed a method of evaluating compact geometric bounds for both
univariate and bivariate polynomials by simply sampling the polynomial. The optimal sampling positions
depend only on the degree of the polynomial.

In addition to the ideas above, we notice that derivative information can help to make the determination
of bounds more precise and faster. The basic idea is that if the derivative has a single sign over an
interval, then the function is bounded by its value at the ends of the interval. By computing bounds on
the derivative in the same way as on the function itself, this idea may be applied recursively. Each of the
above mentioned methods thus has a companion family of derivative versions.

In summary, many approaches exist in the literature for conservatively solving the problem of whether
the curve passes through a given cell or not. In the rest of this paper we compare these approaches in terms
of arithmetic operations involved and localisation of the result, and also suggest some modifications to
these approaches and new approaches of our own.

2. Implicit curve drawing algorithm

The basic recursive strategy as presented in (Snyder, 1992; Suffern, 1990; Taubin, 1994a; Zhang and
Martin, 2000) for drawing an implicit curvef (x, y)= 0 in a given rectangular interval[x, x] × [y,y] is
to evaluatef (x, y) over the desired interval using some range analysis evaluation method (such as IA,
AA or BC) giving a rangeF = [F ,F ]. If the resulting interval does not contain 0, the curve cannot be
present. If it does contain 0, we subdivide the interval horizontally and vertically at its mid point, and
consider the pieces in turn. The process stops when an interval consisting of a single pixel is left. In such
a case we fill the pixel. This may result in a “fat” curve if the test is too conservative, i.e., pixels may be
filled which do not actually contain the curve. In detail, we use the following procedure:
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PROCEDURE Quadtree(x, x, y,y):
F = RangeEvaluation(x,x, y, y);
if F � 0� F then

if x − x < PixelSize ANDy − y < PixelSize then

PlotPixel(x, x, y,y)

else Subdivide(x, x, y, y).

PROCEDURE Subdivide(x,x, y, y):
x̌ = (x + x)/2;
y̌ = (y + y)/2;
Quadtree(x, x̌, y, y̌);
Quadtree(x, x̌, y̌, y);
Quadtree(x̌, x, y̌, y);
Quadtree(x̌, x, y, y̌).

HereF = RangeEvaluation(x, x, y, y) is the conservative interval containing all values off (x, y) over
[x,x] × [y, y], computed using a chosen range analysis method such as IA or AA; (x̌,y̌) is the mid-point
of [x, x] × [y,y].

As far as IA is concerned, the natural interval extensionf depends on the given algorithmic expression
of f ; different expressions will lead to different interval results. For example, a polynomial remains
the same whether it is expressed in the power basis or in the Bernstein basis, but the natural interval
extensions in the two cases are different. Some methods like IA on centred form, the Bernstein coefficient
method, Rivlin’s method and Gopalsamy’s method need to perform further work to also update the
algorithmic form off (x, y) as well as[x, x] × [y, y] during each subdivision.

We should point out that the actual bounds[F ,F ] of f in a cell are unnecessary for the classification
of the cell. It suffices to test any condition equivalent toF � 0� F . This may be used to optimize some
procedures; for example, given the coefficients off in the Bernstein basis. The test may be terminated
after finding any two coefficients of opposite sign.

Two techniques can be used to improve the graphical quality, for the curve drawing problem. One
is to use subpixel techniques: the subdivision can go down to subpixels and combine the results on
the way back up the recursion, which can help to further remove some pixels which do not actually
intersect the curve. The other is to use a sign testing (also known as point sampling) technique, which
can greatly reduce the “fatness” of the approximation. The algorithm given can be easily adapted to
receive the values off at the corners of the box and pass them along, computingf exactly once at each
corner. The overhead of sign testing is thus quite low. Using sign testing, we can compute a drawing that
has pixels of 3 colors: white, when the curve does not cross the pixel, black when the curve definitely
crosses it, as shown by sign testing, and gray, when sign testing fails to give information, but 0 is still
in the computed interval. These two techniques significantly improve the results produced by the poorer
methods described later in the paper, but for the better methods these two techniques do not help much,
and only increase the number of calculations. For this reason, we do not use consider these techniques
further in this paper.
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3. Description of the methods

There are many methods for conservatively solvingf (x, y) = 0 on [x, x] × [y, y] by means of
range analysis. Some methods just need function values, some also need derivatives, and some are
based on a change of basis or rewritingf in a particular form. We consider here IA methods, an AA
method, Bernstein coefficient methods, Taubin’s method, Rivlin’s method, Gopalsamy’s method, and
corresponding derivative versions.

In this section we first review IA, then explain the polynomial power form, Horner form, Bernstein
form and centred form, all using IA, in detail. After that we review AA methods, followed by descriptions
of the Bernstein coefficient methods, Taubin’s method, Rivlin’s method and Gopalsamy’s method. Finally
we describe their derivative versions.

3.1. Interval arithmetic methods

Here we outline traditional IA methods, which are widely used in scientific computation. Interval
arithmetic (or interval analysis) is a technique for numerical computation where each uncertain quantity
is represented by an interval of floating-point numbers. These intervals are added, subtracted, multiplied,
etc. in such a way that each computed interval isguaranteedto contain the unknown value of the quantity
it represents (Moore, 1966, 1979).

An interval x = [a, b], a � b, is a set of real numbers defined by[a, b] = {x | a � x � b}. If x andy
are intervals and� denotes one of the arithmetic operators+,−,× and/, thenx � y is defined by

x � y = {x � y | x ∈ x, y ∈ y}.
Any real numbera is considered to be an intervala = [a, a], which means that expressions such asax,
a+x, x/a, and(−1)x = −x are well defined. Moore (1966) proved that the above definition is equivalent
to the following set of constructive rules:

[a, b] + [c, d] = [a + c, b+ d],
[a, b] − [c, d] = [a − d, b− c],
[a, b] × [c, d] = [

min(ac, ad, bc, bd),max(ac, ad, bc, bd)
]
,

[a, b]/[c, d] = [a, b] × [1/d,1/c] provided 0/∈ [c, d].
A treatment of interval division for intervals containing 0 can be found in (Milne, 1990).

The natural interval extension of a bivariate polynomialf (x, y), denoted byf(x, y), is obtained by
replacing each occurrence ofx and y in f (x, y) by intervalsx and y, and evaluating the resulting
interval expression using the above definitions. The result is itself an interval. As already noted, interval
extensions depend on the specific order of evaluation of the intermediate results. In the case of a
polynomial, the usual order is that first one computes powers ofx andy, multiplies them together and
then multiplies the result by the corresponding coefficient, and the resulting monomials are added. While
the rules for+,−,×, / are exact, more generally, the resulting interval is too large. To see this, consider
x = [−1,2]. Computingx×x gives[−2,4], but the exact range forx2 is [0,4]. This happens here because
the two quantities being multiplied are not independent. Note that even the computation of powers can
be done in several ways. In this paper we use the exact interval result for powers.
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The primary motivation for using interval analysis in almost all applications is that the interval
extension of a function provides bounds for the variation of the function (Moore, 1966). This comes
from the fundamental property of interval arithmetic:x ∈ x ⇒ f (x) ∈ f(x).

In the current application, intervals are used to represent (large)regions of interestin curves and
surfaces (Sederberg and Farouki, 1992; Tuohy et al., 1997). Other types of application use intervals to
represent (small)errorsor uncertainty, using intervals for thecoefficientsof the polynomials in a suitable
basis, rather than the variables.

A significant property of IA already noted is that the form in which the polynomial is expressed can
affect the result (Bowyer et al., 2000). For example, clearlyf (u)= 1+ 2u− u2 = 1+ u(2− u), giving
the power form of the polynomial, and the Horner form respectively. Supposingu = [0,1], using the
power form to evaluatef(u) gives[0,3] as the answer, while the Horner form gives[1,3]. Both answers
are correct, in the sense that the interval obtained is guaranteed to contain the actual range of the function
(but neither is exact: the exact range is[1,2]). Rearranging the function can give tighter bounds on the
result, as does the Horner form in this case. We thus now consider several different ways of expressing
polynomials for evaluation in IA.

3.1.1. IA using the power basis
Here we describe how to use IA to evaluate a polynomial in two variables written in the power basis,

i.e., in which the terms are of the formaij xiyj . Let

f (x, y)=
n∑
i=0

m∑
j=0

aij x
iyj , (x, y) ∈Ω = [x, x] × [y,y]

be a polynomial of two variables in power form. It is helpful to rewritef (x, y) in matrix representation:

f (x, y)=XAY,
where

X= (
1, x, . . . , xn

)
, Y = (

1, y, . . . , ym
)T
, Aij = aij .

Example 1. This example is from (Comba and Stolfi, 1993) (but differs by an affine change of coordina-
tes):

f (x, y)= 15/4+ 8x − 16x2 + 8y − 112xy + 128x2y − 16y2 + 128xy2 − 128x2y2,

and(x, y) ∈ [0,1] × [0,1]. f (x, y) can be rewritten asf (x, y)= P(x, y)=XAY , where

X = (
1, x, x2), Y = (

1, y, y2)T,
A =

[15/4 8 −16
8 −112 128

−16 128 −128

]
.

To evaluatef (x, y), X andY are first computed using special IA rules for powers, and then the matrix
product is found.
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3.1.2. IA using Horner form
The Horner form of a polynomial involves nested brackets. Successively higher powers are computed

working outwards from the innermost bracket. E.g., in the univariate case, the Horner form of the
polynomial functionx3 + 2x2 + 3x + 4 is x(x(x + 2)+ 3)+ 4. Several versions of Horner form exist
in the bivariate case: one can nest inx first theny, or nest iny first thenx, or one can nest alternatively
x, y, x, y, etc.

Two such Horner forms for Example 1 are:

f (x, y) = hx(x, y)= 15/4+ (8− 16y)y + (
8+ (−112+ 128y)y + (−16+ (128− 128y)y

)
x
)
x

= hy(x, y)= 15/4+ (8− 16x)x + (
8+ (−112+ 128x)x + (−16+ (128− 128x)x

)
y
)
y.

In this paper we only considerx first theny and y first thenx Horner forms. Usually they produce
different graphical results, unless the functionf (x, y) is symmetric, as is the one in Example 1.

3.1.3. IA using the Bernstein basis
Bernstein polynomials are widely used for generating Bézier, B-spline and NURBS curves and

surfaces (Farin, 1993). The Bernstein basisBij (u)=
(
i

j

)
uj (1− u)i−j , j = 0,1, . . . , i, has been shown to

be numerically more stable and better conditioned for finding roots than the power basis (Farouki and
Rajan, 1987, 1988).

Bowyer et al. (Berchtold, 2000; Berchtold and Bowyer, 2000; Berchtold et al., 1998; Bowyer et al.,
2000; Voiculescu et al., 2000) have extensively considered IA applied to multivariate Bernstein-form
polynomials.

Conversion between the power basis and Bernstein basis for multivariate polynomials is discussed in
(Berchtold, 2000; Berchtold and Bowyer, 2000). We just give an example here. The Bernstein form for
Example 1 is:

f (x, y) = b(x, y)

=
(

15

4
(1− x)2 + 31

2
(1− x)x − 17

4
x2

)
(1− y)2

+ 2

(
31

4
(1− x)2 − 65

2
(1− x)x + 31

4
x2

)
(1− y)y

+
(

−17

4
(1− x)2 + 31

2
(1− x)x + 15

4
x2

)
y2, where(x, y) ∈ [0,1] × [0,1].

As seen in this example, the Bernstein form is usually more complicated (i.e., less sparse) and may
have many terms. Furthermore it contains repeated subexpressions ofx, (1− x), y and(1− y). Knowing
that repeated expressions can lead to excessive conservativeness in IA, one might doubt the desirability
of using the Bernstein basis with IA. However, practical results show that surprisingly the Bernstein form
not only does well, but it usually does better than the simpler power basis.

Two approaches may be taken to conversion to Bernstein basis. One is to perform the conversion once
only, at the start of the process. The other is to reconvert the polynomial to a new local Bernstein form
every time subdivision is done, in an attempt to localize the curve further. However, the latter approach
is completely unsuccessful, as the resulting interval on evaluating the function contains zero inevery
case, as can easily be seen. Consider the univariate case. After changing the coordinates to new local
ones for the interval under consideration,x = [0,1], so 1− x is also [0,1], andxi(1 − x)j = [0,1].
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Thus,aij xi(1− x)j contains 0, and a sum of such terms needed to evaluate the function also contains 0.
Because of this, we only considerinitial conversion to the Bernstein basis in the rest of the paper.

3.1.4. IA using centred form
The centred form was introduced by Moore in (1966). It has been shown to be an effective tool for

computing function ranges using IA (Ratschek and Rokne, 1984).
The centred form of a bivariate polynomialf (x, y) on [x,x] × [y, y] can be obtained by translating

the coordinate origin to the centre of the rectangle[x, x] × [y, y], using a variable transformation
x = x̃ + (x + x)/2, y = ỹ + (y + y)/2, wherex̃ andỹ are new variables.

Unlike when using the power basis, Horner form or Bernstein basis methods with IA, when using
the centred form, each time subdivision is performed, the centred form of the function must be updated.
Although this requires some extra work, it helps to restrict the computed range of the function on each
rectangle, and overall this approach gives very good results, as we show in Section 4.2.

3.2. Affine arithmetic method

Affine arithmetic (AA) (Comba and Stolfi, 1993) is an alternative approach to IA that can be more
resistant to over-conservatism due to its ability of keeping track of correlations between computed and
input quantities.

In affine arithmetic an uncertain quantityx (such as an interval) is represented by an affine formx̂ that
is a linear expression in a set of noise symbolsεi :

x̂ = x0 + x1ε1 + · · · + xmεm = x0 +
m∑
i=1

xiεi.

Here the values of the noise symbolsεi are unknown but are assumed to be in the range[−1,1]. The
corresponding coefficientxi is a real number that determines the magnitude and sign ofεi . Eachεi
stands for an independent source of error or uncertainty which contributes to the total uncertainty in the
quantityx. One may make the numberm as large as necessary in order to represent all the sources of
uncertainty. These may be input data uncertainty, formula truncation errors, arithmetic rounding errors,
and so on. If the same noise symbolεi appears in two or more affine forms (e.g., in bothx̂ and ŷ), it
indicates that dependencies and correlations exist between the underlying quantitiesx andy.

Conversions between affine forms and intervals are defined in (Comba and Stolfi, 1993): given an
ordinary interval[x, x] representing a quantityx, the corresponding affine form can be written as

x̂ = x0 + x1εx, where we setx0 = (x + x)/2, x1 = (x − x)/2.
Conversely, given an affine form̂x = x0 + x1ε1 + · · · + xmεm, the corresponding interval is

[x, x] = [x0 − ξ, x0 + ξ ], whereξ =
m∑
i=1

|xi |.

Given two affine forms

x̂ = x0 + x1ε1 + · · · + xnεn, ŷ = y0 + y1ε1 + · · · + ynεn,
some simple operations are defined in (Comba and Stolfi, 1993) as below:
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x̂ ± ŷ = (x0 ± y0)+ (x1 ± y1)ε1 + · · · + (xn ± yn)εn,
α± x̂ = (α± x0)+ x1ε1 + · · · + xnεn,
αx̂ = (αx0)+ (αx1)ε1 + · · · + (αxn)εn.

From the above equations, it is clear that, ifx̂ = [−1,1] = 0 + 1 · ε1, ŷ = [−1,1] = 0 + 1 · ε2, in AA,
x̂ − x̂ = 0 and(2x̂ + ŷ)− x̂ = x̂ + ŷ = 0 + ε1 + ε2 = [−2,2], whereas in IA, the results computed are
[−2,2] and[−4,4], respectively.

Multiplication of two affine formsx̂ × ŷ produces a quadratic polynomial in the noise symbolsεi :

x̂ × ŷ =
(
x0 +

n∑
i=1

xiεi

)
×
(
y0 +

n∑
i=1

yiεi

)
.

Comba and Stolfi (1993) show how to reduce the result to a new affine form. By expanding, we get

x̂ × ŷ = x0y0 +
n∑
i=1

(x0yi + y0xi)εi +
(

n∑
i=1

xiεi

)
×
(

n∑
i=1

yiεi

)
.

To produce a new linear expression, the last term, which is quadratic in theεi , is replaced by another new
noise symbolεk with coefficientuv, where

u=
n∑
i=1

|xi |, v =
n∑
i=1

|yi |.

Thusx̂ × ŷ can be expressed as an affine combination of first-degree polynomials onεi plus a new noise
symbolεk whose value is still between[−1,1]:

x̂ × ŷ = x0y0 + (x0y1 + x1y0)ε1 + · · · + (x0yn + xny0)εn + uvεk.
However AA still has a over-conservatism problem. For example, letx̂ = 0+ ε1 + ε2, ŷ = 0+ ε1 − ε2.

The exact range of̂x × ŷ is ε2
1 − ε2

2 = [0,1] − [0,1] = [−1,1], while using AA gives[−4,4]. Besides,
AA does not obey the distributive law. For example, in AA,x̂ × (ŷ − ŷ) is zero, butx̂ × ŷ − x̂ × ŷ is
not zero. To avoid these problems, in this paper, we use the modified Matrix AA polynomial evaluation
method (MAA) we proposed in (Shou et al., 2002), reproduced below.

First we convert the interval forms[x, x] and[y, y] to affine forms

x̂ = x0 + x1εx, ŷ = y0 + y1εy,

as explained earlier. Then let

X̂= (
1, εx, . . . , ε

n
x

)
, Ŷ = (

1, εy, . . . , ε
m
y

)T
.

Let

B =


1 x0 . . . xn−1

0 xn0
0 x1 . . . (n− 1)xn−2

0 x1 nxn−1
0 x1

...
...

. . .
...

...

0 0 . . . xn−1
1 nx0x

n−1
1

0 0 . . . 0 xn1

 ;
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in detail

Bij =
{ (

j

i

)
x
j−i
0 xi1, i � j

0, i > j
, i = 0,1, . . . , n; j = 0,1, . . . , n.

Also, let

C =



1 0 . . . 0 0

y0 y1 . . . 0 0
...

...
. . .

...
...

ym−1
0 (m− 1)ym−2

0 y1 . . . ym−1
1 0

ym0 mym−1
0 y1 . . . my0y

m−1
1 ym1

 ;

in detail

Cij =
{

0, i < j(
i

j

)
y
i−j
0 y

j

1, i � j , i = 0,1, . . . ,m; j = 0,1, . . . ,m.

Now, if we computeD from matricesB andC, and the original coefficient matrixA, as follows

D = BAC,
we obtain

f (x̂, ŷ)= X̂DŶ =
n∑
i=0

m∑
j=0

Dij ε
i
xε
j
y .

Up to now the calculation is exact; in the next step we convert this result back to interval form[F,F ],
as follows. Ifi is even andj is even, thenεixε

j
y ∈ [0,1], otherwiseεixε

j
y ∈ [−1,1]. Thus,

F = D00 +
m∑
j=1

{
max(0,D0j ), if j is even

|D0j |, otherwise

}
+

n∑
i=1

{
max(0,Di0), if i is even

|Di0|, otherwise

}

+
n∑
i=1

m∑
j=1

{
max(0,Dij ), if i, j are both even

|Dij |, otherwise

}
,

and

F = D00 +
m∑
j=1

{
min(0,D0j ), if j is even

−|D0j |, otherwise

}
+

n∑
i=1

{
min(0,Di0), if i is even

−|Di0|, otherwise

}

+
n∑
i=1

m∑
j=1

{
min(0,Dij ), if i, j are both even

−|Dij |, otherwise

}
.

This gives tighter bounds onf (x, y) over the range[x, x] × [y, y] than straightforward AA.
Unlike IA and AA, which do not obey the distributive law, MAA satisfies all the commutative,

associative and distributive laws because it keeps all powers of noise symbols without approximation.
In this respect, there is no difference between MAA and real arithmetic. Because of this, using different
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algorithmic expressions for a polynomial function does nothing other than rearranging the terms, and
does not affect the result of evaluation of the polynomial in MAA. For example, considerf (x)= 4x2 −
12x + 9 over the intervalx = [0,1]. Its Bernstein form isb(x)= 9(1 − x)2 + 6x(1 − x)+ x2. Its affine
form is x̂ = 1

2(1− ε1). In IA, f ([0,1])= [−3,13], while b([0,1])= [0,16]: they are different. In MAA,
f (x̂)= 4x̂2 − 12x̂ + 9= 4+ 4ε1 + ε2

1, while b(x̂)= 9(1− x̂)2 + 6x̂(1− x̂)+ x̂2 = 4+ 4ε1 + ε2
1 = f (x̂):

they are the same. Therefore, when MAA is involved, only the power basis needs to be considered.
The above argument relies on the commutativity, associativity and distributivity of real numbers. More

subtly, one may argue that in practice this is not true because of the non-commutativity, associativity and
distributivity of computer floating point arithmetic used in MAA operations. However, machine precision
is negligible when compared with the widths of the intervals used in solving the curve drawing problem.
Although in principle there may be tiny differences in results computed using MAA with different forms
or bases on a computer, they are not significant and can be ignored for the purposes of this paper as pixel
sizes considered here are much larger than machine precision. (Careful choice of rounding directions
should be used to ensure that output intervals are still guaranteed to contain the exact range of the
function.)

3.3. Bernstein coefficient methods

Another family of methods for bounding the range of a polynomial over an interval depends on the
Bernstein convex hull property (Farin, 1993), which guarantees that the value of a polynomial over the
interval [0,1] is bounded by the values of the minimum and maximum Bernstein coefficients when the
polynomial is written in the Bernstein basis.

To utilize this property for the evaluation off (x, y) over the region[x, x] × [y, y], we must first
convert the range[x, x] × [y, y] to [0,1] × [0,1]. This can be done by a change of variables:

x = x + (x − x)x̃, y = y + (y − y)ỹ,
wherex̃ andỹ are new variables. Then

f (x, y)= X̃(EART)Ỹ T,

where

X̃= (
1, x̃, . . . , x̃n

)
, Ỹ = (

1, ỹ, . . . , ỹn
)
,

Eij =
{ (

j

i

)
xj−i(x − x)i, i � j

0, i > j
, i = 0,1, . . . , n; j = 0,1, . . . , n,

and

Rij =
{ (

j

i

)
yj−i (y − y)i, i � j

0, i > j
, i = 0,1, . . . ,m; j = 0,1, . . . ,m.

Let

G=EART.

Then

f̃ (x̃, ỹ)= X̃GỸ T, (x̃, ỹ) ∈ [0,1] × [0,1],
completing the range conversion.
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Next we need to convert the above polynomial from the power basis to the Bernstein basis. Let

B̃n(X̃)= (
Bn0(x̃),B

n
1(x̃), . . . ,B

n
n(x̃)

)
, B̃m(Ỹ )= (

Bm0 (ỹ),B
m
1 (ỹ), . . . ,B

m
m(ỹ)

)
,

whereBij (u)=
(
i

j

)
uj (1− u)i−j are the Bernstein basis functions. Then

B̃n(X̃)= X̃H, B̃m(Ỹ )= Ỹ P,
where

Hij =
{

0, i < j

(−1)i−j
(
n

j

)(
n−j
i−j
)
, i � j , i = 0,1, . . . , n; j = 0,1, . . . , n,

Pij =
{

0, i < j

(−1)i−j
(
m

j

)(
m−j
i−j
)
, i � j , i = 0,1, . . . ,m; j = 0,1, . . . ,m.

Then

f̃ (x̃, ỹ)= B̃n(X̃)H−1G
(
P T)−1

B̃m(Ỹ )T,

so, letting

Q=H−1G
(
P T
)−1
,

we obtain

f̃ (x̃, ỹ)= B̃n(X̃)QB̃m(Ỹ )T, (x̃, ỹ) ∈ [0,1] × [0,1].
The conversion from the power basis to Bernstein basis is completed.

Let

F = min
i,j

{Qij }, F = max
i,j

{Qij }, i ∈ {0,1, . . . , n}, j ∈ {0,1, . . . ,m}.

By the Bernstein convex hull property (Farin, 1993) we know that

F � f̃ (x̃, ỹ)� F, (x̃, ỹ) ∈ [0,1] × [0,1],
and so

F � f (x, y)� F, (x, y) ∈ [x, x] × [y,y],
giving the desired bounds onf (x, y) over the range[x, x] × [y, y].

To make the bounds oñf (x̃, ỹ) tighter over the range[0,1] × [0,1], we can elevate the degree
of Bernstein polynomialf̃ (x̃, ỹ) from degree(n,m) to degree(n + 1,m + 1). The same polynomial
written as a higher degree Bernstein polynomial has a tighter Bernstein hull, but there is an additional
computational cost, not only due to the conversion itself, but also because the higher degree polynomial
generally has more terms. Since

B̃n(X̃)= B̃n+1(X̃)W, B̃m(Ỹ )= B̃m+1(Ỹ )V ,

where
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Wij =


n−i+1
n+1 , i = j
i
n+1, i = j + 1,

0, otherwise

i = 0,1, . . . , n+ 1; j = 0,1, . . . , n,

Vij =


m−i+1
m+1 , i = j
i

m+1, i = j + 1,

0, otherwise

i = 0,1, . . . ,m+ 1; j = 0,1, . . . ,m.

Then

f̃ (x̃, ỹ)= B̃n+1(X̃)WQV TB̃m+1(Ỹ )T,

so, letting

S =WQV T,

we obtain

f̃ (x̃, ỹ)= B̃n+1(X̃)SB̃m+1(Ỹ )T, (x̃, ỹ) ∈ [0,1] × [0,1],
and

F = min
i,j

{Sij }, F = max
i,j

{Sij }, i ∈ {0,1, . . . , n+ 1}, j ∈ {0,1, . . . ,m+ 1}.

This process may be repeated as many times as one wishes. Table 1 shows the effect of degree elevation
up to five times when drawing the curve

15/4+ 8x − 16x2 + 8y − 112xy + 128x2y − 16y2 + 128xy2 − 128x2y2 = 0

over [0,1] × [0,1]. ‘Pixels plotted’ shows the number of pixels plotted. The other columns show the
number of subdivisions needed and how much arithmetic was required using the corresponding amount
of degree elevation. From Table 1 we can see that degree elevation does not help to classify the curve
further, and simply increases the amount of operations involved. This is probably because the Bernstein
coefficient method without degree elevation already reaches the best possible graphical result at the given
resolution. Similar results were observed for other curves. We therefore conclude that degree elevation is
not worthwhile, and it is not considered in the rest of this paper.

Table 1
Effect of degree elevation when drawing the curve 15/4 + 8x − 16x2 + 8y − 112xy +
128x2y − 16y2 + 128xy2 − 128x2y2 = 0 using Bernstein coefficient method

Degree elevation Pixels plotted Subdivisions Additions Multiplications

1 522 535 508720 265660
2 522 535 680164 402700
3 522 535 911618 616820
4 522 535 1211654 925148
5 522 535 1588844 1344812
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3.4. Taubin’s method

Taubin’s method (Taubin, 1994b) can be seen as a specialized form of interval method for polynomials.
Although it is not explicitly given in his paper, Taubin actually proved that the bounds of

f (x, y)=
n∑
i=0

m∑
j=0

aij x
iyj

on the box[−δ, δ] × [−δ, δ] are

F = a00 −
n+m∑
h=1

Fhδ
h,

F = a00 +
n+m∑
h=1

Fhδ
h

where

Fh =
∑
i+j=h

|aij |.

Since this formula is valid only for the region[−δ, δ] × [−δ, δ], to apply this method to a general
region[x, x]× [y, y] we must first translate the coordinate origin to the centre of[x, x] × [y, y] as in the
IAC method and setδ = max((x − x)/2, (y − y)/2).
3.5. Rivlin’s method

Rivlin (1970) proposed a method for computing bounds on a univariate polynomial over the interval
[0,1] by evaluating the function at several points in its range. Garloff (1985) extended the idea to the
bivariate case. For an integerk we defineK = {(i, j), i = 0,1, . . . , k; j = 0,1, . . . , k}. The bounds
[F ,F ] involve the function values of the polynomial on a regular grid dividing the unit square
[0,1] × [0,1] at the points(i/k, j/k), (i, j) ∈K . Garloff showed that

F = min
(i,j)∈K

f

(
i

k
,
j

k

)
− αk,

F = max
(i,j)∈K

f

(
i

k
,
j

k

)
+ αk,

where

αk = 1

8k2

n∑
i=0

m∑
j=0

(i + j)(i + j − 1)|aij |.

Since this formula is valid only for the region[0,1] × [0,1], to apply this method to a general region
[x,x]×[y, y] we first convert[x, x]×[y,y] to [0,1]×[0,1] using the approach described in Section 3.3.

The smallest value ofk which may be used is 1. One can choose biggerk in order to increase the
accuracy of the bounds, but at the expense of increasing the amount of calculation involved. Table 2
shows the effect of changingk when drawing the curve

15/4+ 8x − 16x2 + 8y − 112xy + 128x2y − 16y2 + 128xy2 − 128x2y2 = 0
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Table 2
Effect of changingk when drawing the curve 15/4 + 8x − 16x2 + 8y −
112xy + 128x2y − 16y2 + 128xy2 − 128x2y2 = 0 using Rivlin’s method

k Pixels plotted Subdivisions Additions Multiplications

1 534 585 669849 427489
2 526 541 796379 545808
3 522 539 1038289 753681
4 522 535 1342021 1016180
5 522 535 1721557 1343661

over [0,1] × [0,1]. We can see that increasingk only slightly improves the accuracy of the curve drawn
while the number of operations involved steadily increases. We observed similar results for other curves.
As a result, we choose the value ofk to be 1 wherever we consider Rivlin’s method in the rest of the
paper.

3.6. Gopalsamy’s method

Gopalsamy (1991) also proposed a method for computing bounds on annth degree bivariate
polynomial by sampling the polynomial. The optimal sampling positions are calculated once and for
all for various degrees of polynomial (2� n � 9) using numerical methods, and depend only on the
degree of the polynomial.

Gopalsamy’s bounds on a degreen polynomialf (x, y) over[0,1] × [0,1] are calculated as

F = T −Ug, F = T +Ug,
where

T = 1

(n+ 1)2

n∑
i=0

n∑
j=0

f (ui, vj ),

and

Ug =
[

n∑
i=0

n∑
j=0

g2(ui, vj )

]1/2

,

where

g(ui, vj )= f (ui, vj )− T .
Hereui andvi , 0 � i � n, are the optimal parameter values for sampling given in (Gopalsamy et al.,
1991) for various values ofn (2 � n� 9).

Unlike any of the previous methods, direct use of Gopalsamy’s method requires the computation
of square roots, rather than just the four basic arithmetic operations. This may be avoided as follows:
havingT andU2 such thatf = T −U andf = T +U , instead of testingf f � 0, the program may test
the equivalent inequalityT 2 � U2. However we cannot avoid computing square roots in Gopalsamy’s
derivative version methods described later, and therefore we do not use this improvement in this paper.
In practice the number of square root operations is small, anyhow.
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Table 3
Example 1. Comparison of range analysis based subdivision methods for drawing the curve15

4 + 8x − 16x2 + 8y − 112xy +
128x2y − 16y2 + 128xy2 − 128x2y2 = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 25567 15332 4916592 6010240
IAPD 8891 8652 4354562 5406276
IAPRD 1282 1662 1439351 924556
IAHX 10733 6852 1372266 1315630
IAHXD 3112 3225 1149422 1099988
IAHXRD 1011 1187 955775 453688
IAHY 10733 6852 1372266 1315630
IAHYD 3112 3225 1148630 1099988
IAHYRD 1011 1187 955633 453688
IAB 3946 3467 1742472 1969396
IABD 888 1535 1671154 1919602
IABRD 662 974 916045 638662
IAC 526 563 435790 378420
IACD 522 545 644162 542603
IACRD 522 545 487349 301389
AA 526 563 404262 171226
AAD 522 545 575822 283096
AARD 522 545 478337 264396
BC 522 535 388714 188572
BCD 522 535 1175398 807960
BCRD 522 535 538651 327622
T 530 587 473100 143287
TD 522 545 723215 243205
TRD 522 545 492432 258433
R 534 585 669849 427489
RD 522 553 1025493 614414
RRD 522 553 543568 316112
G 1072 1031 1430258 1368583 4125
GD 630 723 1764041 1435000 6627
GRD 574 609 647386 433080 609

3.7. Derivative versions

Using the derivative off (x, y) can provide extra information, which can help to make the
determination of the bounds forf (x, y) on [x, x] × [y, y] more precise.

The idea is that before evaluatingf (x, y) over[x, x]×[y, y] usinganyrange analysis method, we first
evaluate two further functions∂f/∂x and∂f/∂y over[x, x]×[y,y] using the same range analysis method
as used to evaluatef itself. If both resulting derivative intervals do not straddle 0, thenf increases or
decreases monotonically on going across the interval inx andy. Thus,exactbounds off (x, y) over
[x,x] × [y, y] can be obtained immediately as shown below:

• If ∂f

∂x
> 0 and ∂f

∂y
> 0, thenF = f (x, y), F = f (x,y);

• If ∂f

∂x
> 0 and ∂f

∂y
< 0, thenF = f (x, y), F = f (x, y);
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Table 4
Example 2. Comparison of range analysis based subdivision methods for drawing the curve 20160x5 − 30176x4 + 14156x3 −
2344x2 + 151x + 237− 480y = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 17680 11458 3485276 4308300
IAPD 9057 8220 3646732 4511428
IAPRD 726 1216 503413 490700
IAHX 2643 2530 400228 384596
IAHXD 626 1108 486772 462324
IAHXRD 463 621 387027 336266
IAHY 2643 2530 400228 384596
IAHYD 626 1108 486772 462324
IAHYRD 463 621 387027 336266
IAB 3087 2933 4077830 4998256
IABD 837 1728 4150256 5274376
IABRD 494 799 624347 826794
IAC 433 459 656630 624578
IACD 432 447 426520 392894
IACRD 432 445 187933 172769
AA 433 459 601510 407812
AAD 432 447 314856 266244
AARD 432 445 179407 156053
BC 432 444 621548 448530
BCD 432 444 1026684 1061312
BCRD 432 444 263595 261641
T 435 471 671867 350608
TD 432 449 443947 235496
TRD 432 447 191515 152692
R 434 470 864116 697857
RD 432 456 619102 458333
RRD 432 454 226630 194686
G 1581 1605 6147408 9387500 6421
GD 473 656 2065355 2742316 5913
GRD 446 510 444176 553800 414

• If ∂f

∂x
< 0 and ∂f

∂y
> 0, thenF = f (x, y), F = f (x,y);

• If ∂f

∂x
< 0 and ∂f

∂y
< 0, thenF = f (x, y), F = f (x, y);

The same idea can also be used recursively—to get the bounds on∂f/∂x, one can use its derivatives,
i.e., ∂2f/∂x2, ∂2f/∂x∂y, and so on. This process must terminate whenever a derivative is a constant
function.

The recursive derivative methods use not only first derivatives but all higher derivative information
possible in trying to find the exact bounds off (x, y) over [x,x] × [y, y], and therefore they are more
accurate. Since the recursive derivative methods require evaluation of higher derivatives, one might
expect that these methods need more operations than first derivative only methods. However, our results
in Tables 3–12 show that the recursive derivative methods generally not only generate more accurate
results but also need less total operations than the first derivative methods. The definite classification of
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Table 5
Example 3. Comparison of range analysis based subdivision methods for drawing the curve 0.945xy − 9.43214x2y3 +
7.4554x3y2 + y4 − x3

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 4026 3909 1493798 1876438
IAPD 821 1840 1140246 1542534
IAPRD 623 951 1390208 1037968
IAHX 2537 2468 646954 789838
IAHXD 690 1131 668336 860594
IAHXRD 610 792 1281666 1065100
IAHY 2672 2609 621250 751462
IAHYD 673 1108 687886 867346
IAHYRD 610 798 1322760 1130234
IAB 1579 1564 2149336 2615424
IABD 613 780 2729162 3447920
IABRD 599 708 4114797 3103070
IAC 608 631 1546481 1573073
IACD 593 594 1916664 1837020
IACRD 592 589 1169674 896039
AA 608 634 1178329 646933
AAD 593 596 1549458 817927
AARD 592 591 1103553 687932
BC 592 585 1101958 738022
BCD 592 585 3044980 2651225
BCRD 592 585 1415699 1056651
T 609 638 1193422 543787
TD 593 597 1680410 688301
TRD 592 592 1153440 661934
R 610 640 1850213 1590386
RD 593 604 2486531 1938248
RRD 592 598 1371473 958173
G 1799 1755 10858163 17110175 7021
GD 643 755 5695524 7547702 6587
GRD 606 669 2219246 2327926 2074

some areas using higher derivatives means that they do not need to be subdivided, which generally seems
to outweigh the extra operations required in other areas. One disadvantage of the recursive derivative
methods is that they use a lot of stack operations which are not counted here, and which add to the
execution time.

4. Experiments

4.1. Test cases

We have now outlined various methods for estimating the range of a function over a rectangle. The
rest of this paper considers a series of examples of plotting various functions using the different methods
described earlier, in an attempt to understand which methods work best.
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Table 6
Example 4. Comparison of range analysis based subdivision methods for drawing the curvex9 − x7y + 3x2y6 − y3 + y5 +
y4x − 4y4x3 = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 2560 2430 2367580 3032950
IAPD 801 1027 1620456 2298498
IAPRD 778 886 5909984 5078928
IAHX 1538 1496 930832 1137148
IAHXD 784 865 1843724 2373058
IAHXRD 776 822 7069814 8552740
IAHY 1417 1370 852480 1052350
IAHYD 773 808 1322608 1720094
IAHYRD 772 791 8559296 10299586
IAB 2156 2107 21860804 27933704
IABD 798 1040 30356562 40904380
IABRD 780 879 7305730 8824128
IAC 816 857 9324996 11168193
IACD 787 805 13491137 15508341
IACRD 778 795 8094666 7467202
AA 816 857 6773822 6302500
AAD 787 805 10281617 8838443
AARD 778 795 7421194 5923621
BC 770 756 6701649 7001260
BCD 770 756 21970123 28303068
BCRD 770 756 8579701 8391015
T 819 880 6508351 5510363
TD 790 813 10091322 7698515
TRD 782 798 7516455 5700579
R 826 894 10642248 11835093
RD 790 821 15869922 16651905
RRD 779 807 9228983 8084017
G 4586 4458 173931656 468575967 17833
GD 1305 2112 132033458 313476478 20266
GRD 889 1178 34030133 64049202 9873

First, we briefly describe our set of test cases used to compare the accuracy and speed of each of
the methods described. Each test comprises plotting a polynomialf (x, y) = 0 using the curve drawing
algorithm given in Section 2 on a grid of 256× 256 pixels. We usedMathematica 4.1as a convenient
test bed.

The first example which differs only by a affine change of coordinates from the one in (Comba and
Stolfi, 1993) is:

15

4
+ 8x − 16x2 + 8y − 112xy + 128x2y − 16y2 + 128xy2 − 128x2y2 = 0

on [0,1] × [0,1]. This is a symmetric low degree polynomial. The curve as shown in Fig. 1 consists of
three components over the region of interest; two of these meet the boundary and the other is a closed
loop. Drawings of the curve produced by various range analysis methods are shown in Figs. 11–26.
Note that the graphical results for IA on centred form, for AA, for the Bernstein coefficient method,
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Table 7
Example 5. Comparison of range analysis based subdivision methods for drawing the curve−1801

50 +280x−816x2 +1056x3 −
512x4 + 1601

25 y − 512xy + 1536x2y − 2048x3y + 1024x4y = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 55158 19562 9336638 11580850
IAPD 47223 18431 16553602 20607928
IAPRD 1813 1601 1731156 1534894
IAHX 45896 17601 3316604 3097818
IAHXD 33889 14603 9031358 8757640
IAHXRD 1667 1522 2159716 1743454
IAHY 43259 17442 4533596 4325676
IAHYD 33192 14386 10791388 10403372
IAHYRD 1718 1599 2346688 1857032
IAB 30212 12735 11862746 14161596
IABD 25604 11191 19972916 23964246
IABRD 850 985 1032154 999998
IAC 464 611 736514 686915
IACD 456 535 997286 877847
IACRD 456 477 479671 403475
AA 464 611 599656 339853
AAD 456 535 813646 518040
AARD 456 477 465475 368272
BC 456 465 483239 294463
BCD 456 465 1776552 1701900
BCRD 456 465 519443 440263
T 470 659 720470 303253
TD 456 589 1114931 496031
TRD 456 477 478283 362330
R 470 690 1014447 785072
RD 456 598 1478852 1075782
RRD 456 497 557549 442373
G 1378 1973 6458419 9777212 7893
GD 485 1215 6099441 7626677 11188
GRD 464 583 879911 941563 640

for Taubin’s method, and for Rivlin’s method (all with or without derivative information) are virtually
identical visually, and in the interests of space we have just shown one representative picture in Fig. 23.

At first sight it may appear strange that some of the computed results are not merely ‘fat’ curves, but
incorporate lines transversal to the actual curves, especially appearing as isolated short segments (e.g.,
see Fig. 22). This is can be understood by thinking of the output as the intersection of two figures, one
drawn by the range analysis method itself, and the other one drawn by the derivative information method.
Both of them are continuous, but their intersection may not be continuous. The transversal lines are the
curves where the derivatives are equal to zero.

The second example (Fig. 2) is from (Zhang and Martin, 2000):

20160x5 − 30176x4 + 14156x3 − 2344x2 + 151x + 237− 480y = 0

on [0,1] × [0,1]. This is a strongly asymmetric medium degree polynomial.
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Table 8
Example 6. Comparison of range analysis based subdivision methods for drawing the curve601

9 − 872
3 x + 544x2 − 512x3 +

256x4 − 2728
9 y + 2384

3 xy − 768x2y + 5104
9 y2 − 2432

3 xy2 + 768x2y2 − 512y3 + 256y4 = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 48088 19132 11403848 14234392
IAPD 29321 14039 13391336 16830580
IAPRD 2819 2525 3007275 2539108
IAHX 31099 14399 4415370 4262176
IAHXD 19521 9617 8160076 7896454
IAHXRD 2435 2417 3047763 2080756
IAHY 31008 14373 4407258 4254480
IAHYD 19179 9449 8014434 7758502
IAHYRD 2461 2384 3005033 2051422
IAB 14131 8315 22291500 27207496
IABD 8535 6978 54778878 67714114
IABRD 1979 2206 5090611 5848074
IAC 460 558 1463312 1464788
IACD 455 501 1346822 1244627
IACRD 455 482 731951 605886
AA 460 560 1329630 788830
AAD 455 502 1266280 700824
AARD 455 483 706751 468204
BC 454 454 1104452 789386
BCD 454 454 2209336 1916862
BCRD 454 454 889325 747434
T 466 596 1395910 694033
TD 455 514 1422903 609968
TRD 455 488 742887 447188
R 472 601 2053509 1678435
RD 457 525 2027672 1465521
RRD 457 504 945500 699666
G 1291 1596 8350370 11824383 6385
GD 512 779 4795051 5427360 7207
GRD 486 607 1525807 1650371 1314

The third example is from (Voiculescu et al., 2000):

0.945xy − 9.43214x2y3 + 7.4554x3y2 + y4 − x3 = 0

on [0,1] × [0,1]. This is an asymmetric medium degree polynomial. The curve (Fig. 3) consists of two
components over the region of interest; each meets the boundary.

The fourth example is from (Zhang and Martin, 2000):

x9 − x7y + 3x2y6 − y3 + y5 + y4x − 4y4x3 = 0

on [0,1] × [0,1]. This is an asymmetric high degree polynomial. The curve (Fig. 4) consists of two
components over the region of interest; each meets the boundary.

The fifth example (Fig. 5) which differs only by a affine change of coordinates from the one in (Zhang
and Martin, 2000) is:
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Table 9
Example 7. Comparison of range analysis based subdivision methods for drawing the curve−13+ 32x − 288x2 + 512x3 −
256x4 + 64y − 112y2 + 256xy2 − 256x2y2 = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 25875 13140 4860268 5991952
IAPD 11415 8326 4682586 5885352
IAPRD 1257 1295 1159615 771280
IAHX 14588 8358 1880448 1939112
IAHXD 5453 4251 2283366 2421118
IAHXRD 1114 1135 1072335 622900
IAHY 11375 6538 1470836 1412260
IAHYD 4025 3222 1618706 1595296
IAHYRD 1074 1097 1023799 580636
IAB 9042 5065 7421300 8955360
IABD 3488 2619 9804078 12066954
IABRD 1011 1014 1378353 1318774
IAC 512 625 926157 860294
IACD 450 499 975782 841732
IACRD 450 497 536422 361290
AA 512 627 873923 476708
AAD 450 501 932182 479614
AARD 450 497 523494 296746
BC 426 437 623874 394011
BCD 426 437 1575655 1270938
BCRD 426 437 574694 416959
T 532 675 983951 421354
TD 456 521 1122203 423094
TRD 456 513 562111 294457
R 510 624 1243219 919788
RD 456 521 1514864 990452
RRD 456 513 629178 397463
G 1414 1689 6419333 8270251 6757
GD 503 721 3269620 3387019 6795
GRD 472 609 1103949 1067172 729

−1801

50
+ 280x − 816x2 + 1056x3 − 512x4 + 1601

25
y − 512xy

+ 1536x2y − 2048x3y + 1024x4y = 0

on [0,1] × [0,1]. This is an antisymmetric medium degree polynomial.
The sixth example which differs only by a affine change of coordinates from the one in (Voiculescu,

t.a.) is:

601

9
− 872

3
x + 544x2 − 512x3 + 256x4 − 2728

9
y

+ 2384

3
xy − 768x2y + 5104

9
y2 − 2432

3
xy2 + 768x2y2 − 512y3 + 256y4 = 0

on [0,1] × [0,1]. This is an asymmetric medium degree polynomial. The curve (Fig. 6) consists of two
components over the region of interest; each is a closed loop.
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Table 10
Example 8. Comparison of range analysis based subdivision methods for drawing the curve−169

64 + 51
8 x− 11x2 + 8x3 + 9y −

8xy − 9y2 + 8xy2 = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 17223 10744 2583044 3094342
IAPD 2444 3793 1106100 1328828
IAPRD 967 1175 501229 309466
IAHX 7512 5493 919952 878918
IAHXD 1242 1707 515150 479292
IAHXRD 878 991 460279 227248
IAHY 7429 5483 918000 877318
IAHYD 1220 1699 484126 462154
IAHYRD 881 1001 433011 213700
IAB 5292 4055 3695222 4347226
IABD 1228 1671 3404828 4131398
IABRD 862 960 564873 523404
IAC 818 827 842101 727934
IACD 808 813 864027 711250
IACRD 806 803 347400 209274
AA 818 827 855337 397078
AAD 808 813 875785 429406
AARD 806 803 347386 197538
BC 804 791 827964 456045
BCD 804 791 1652898 1135417
BCRD 804 791 364427 222577
T 838 853 947054 337885
TD 808 817 1084939 366272
TRD 806 805 353928 195778
R 832 851 1277816 830144
RD 808 817 1463993 846534
RRD 806 807 369676 216376
G 1888 1871 4016062 3997209 7485
GD 822 886 1612136 1269898 7455
GRD 812 843 439705 294257 230

The seventh example which also differs only by a affine change of coordinates from the one in
(Voiculescu, t.a.) is:

−13+ 32x − 288x2 + 512x3 − 256x4 + 64y − 112y2 + 256xy2 − 256x2y2 = 0

on [0,1] × [0,1]. This is an asymmetric medium degree polynomial. The curve (Fig. 7) comprises a
single closed loop containing two cusps.

The eighth example is

−169

64
+ 51

8
x − 11x2 + 8x3 + 9y − 8xy − 9y2 + 8xy2 = 0

on [0,1]× [0,1]. This is an asymmetric medium degree polynomial. The curve (Fig. 8) contains a single
component with a self-intersection point.
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Table 11
Example 9. Comparison of range analysis based subdivision methods for drawing the curve 47.6−220.8x+476.8x2 −512x3 +
256x4 − 220.8y + 512xy − 512x2y + 476.8y2 − 512xy2 + 512x2y2 − 512y3 + 256y4 = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 49971 19545 11653398 14541664
IAPD 33761 15283 14845250 18578276
IAPRD 3284 2705 3024465 2524648
IAHX 33026 14807 4544662 4382944
IAHXD 22026 10832 9563102 9263614
IAHXRD 2805 2635 3530831 2477374
IAHY 33026 14807 4544662 4382944
IAHYD 22026 10832 9474452 9176956
IAHYRD 2805 2635 3446441 2393046
IAB 18860 9629 25824052 31506904
IABD 12956 8389 66581950 82125622
IABRD 1710 1522 2597999 3065494
IAC 1144 1261 4154102 4379058
IACD 1080 1053 3303970 3184889
IACRD 1080 1033 1571521 1361269
AA 1144 1269 3012696 1787102
AAD 1080 1057 2696170 1490676
AARD 1080 1037 1397061 964716
BC 1073 1000 2431524 1737242
BCD 1073 1000 4983432 4336576
BCRD 1073 1000 1785391 1545664
T 1208 1373 3215504 1598461
TD 1080 1085 3035159 1299883
TRD 1080 1037 1413728 915445
R 1208 1393 5028905 4653463
RD 1080 1119 4572173 3584474
RRD 1080 1099 1885110 1538142
G 3160 3237 24751718 46111387 12949
GD 1120 1541 12396588 17507303 14326
GRD 1112 1305 3788300 5547762 1707

The ninth example which differs only by a affine change of coordinates from the one in (Ratschek and
Rokne, t.a.) is:

47.6− 220.8x + 476.8x2 − 512x3 + 256x4 − 220.8y + 512xy − 512x2y

+ 476.8y2 − 512xy2 + 512x2y2 − 512y3 + 256y4 = 0

on [0,1] × [0,1]. This is a symmetric medium degree polynomial. The curve (Fig. 9) consists of two
concentric circles with a relatively small distance between them.

The tenth example is

55

256
− x + 2x2 − 2x3 + x4 − 55

64
y + 2xy − 2x2y + 119

64
y2 − 2xy2 + 2x2y2 − 2y3 + y4 = 0

on [0,1] × [0,1]. This is an asymmetric medium degree polynomial. The curve (Fig. 10) consists of two
circles which meet tangentially.
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Table 12
Example 10. Comparison of range analysis based subdivision methods for drawing the curve55

256 − x + 2x2 − 2x3 + x4 −
55
64y + 2xy − 2x2y + 119

64 y
2 − 2xy2 + 2x2y2 − 2y3 + y4 = 0

Methods Pixels plotted Subdivisions Additions Multiplications Square roots

IAP 45865 18727 11157626 13483618
IAPD 30651 14329 13858740 17001158
IAPRD 1696 1553 1644149 1320658
IAHX 28159 13157 3822978 3894544
IAHXD 19496 9724 8000502 8184954
IAHXRD 1514 1553 1865047 1294114
IAHY 28077 13075 3799526 3870272
IAHYD 19158 9610 7897612 8082810
IAHYRD 1508 1533 1844109 1280858
IAB 12680 7605 16493268 20138700
IABD 8672 6461 42295318 51683386
IABRD 920 1263 1813369 1937956
IAC 784 841 2205466 2193876
IACD 772 793 2144124 1962977
IACRD 772 781 832283 657657
AA 784 845 2006376 1190110
AAD 772 797 2024514 1103620
AARD 772 785 826231 600604
BC 772 773 1879618 1343170
BCD 772 773 3525360 3015788
BCRD 772 773 923947 749912
T 812 905 2119736 1053709
TD 776 817 2290543 964535
TRD 776 801 859980 604001
R 804 890 3039295 2484151
RD 780 827 3174385 2277012
RRD 776 806 937889 714606
G 2316 2385 12449158 17654749 9541
GD 860 1175 6944787 7798088 10713
GRD 792 875 1281869 1264587 488

These examples have been chosen to illustrate polynomials of varying degrees, with differing numbers
of components which may be closed or open, and include curves with cusps, self-intersections and
tangencies as special cases. Obviously, no finite set of test cases can establish general truths, but we
have aimed to capture a range of curve behaviour with these test cases, including well-known problem
cases. This at least gives some hope that any conclusions we draw are not specific to any particular
example.

Although our implementations can handle any rectangular plot range, not only the unit square, for
comparison purposes we need to use the same plot range for each method. As many methods such as
IAB, BC, R, G are only defined on the unit square, we would need to transform the original rectangular
plot range to the unit square when these methods are involved. For these reasons we confine the plot range
for testing to the unit square[0,1] × [0,1]. This does not lose generality because any other rectangular
range can be mapped onto the unit square by a linear variable transformation.
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Fig. 1. Example 1.15
4 + 8x − 16x2 + 8y − 112xy +

128x2y − 16y2 + 128xy2 − 128x2y2 = 0.
Fig. 2. Example 2. 20160x5 − 30176x4 + 14156x3 −
2344x2 + 151x + 237− 480y = 0.

Fig. 3. Example 3. 0.945xy − 9.43214x2y3 +
7.4554x3y2 + y4 − x3 = 0.

Fig. 4. Example 4.x9−x7y+3x2y6−y3+y5+y4x−
4y4x3 = 0.

We only show graphical output for the first example for reasons of space. Instead, we present a
numerical summary of accuracy and computational expense for each example in table form. When
comparing the performance and efficiency of the different range analysis based subdivision methods,
a number of quantities were measured:

• The number of pixels filled, the fewer the better: plotted pixels may or may not contain the curve in
practice.
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Fig. 5. Example 5.−1801
50 +280x −816x2 +1056x3 −

512x4 + 1601
25 y − 512xy + 1536x2y − 2048x3y +

1024x4y = 0.

Fig. 6. Example 6.601
9 − 872

3 x + 544x2 − 512x3 +
256x4 − 2728

9 y + 2384
3 xy − 768x2y + 5104

9 y2 −
2432

3 xy2 + 768x2y2 − 512y3 + 256y4 = 0.

Fig. 7. Example 7.−13 + 32x − 288x2 + 512x3 −
256x4 + 64y − 112y2 + 256xy2 − 256x2y2 = 0.

Fig. 8. Example 8.−169
64 + 51

8 x − 11x2 + 8x3 + 9y −
8xy − 9y2 + 8xy2 = 0.

• The number of additions (including subtractions) and multiplications (including divisions) needed,
the fewer the better.

• The number of subdivisions involved, the lower the better, due to overheads in recursion (stack push
and pop operations). Also, less subdivisions result in a smaller number of rectangles used to describe
the output, which may improve the speed of any subsequent processing to be performed on the output.
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Fig. 9. Example 9. 47.6−220.8x+476.8x2 −512x3 +
256x4 − 220.8y + 512xy − 512x2y + 476.8y2 −
512xy2 + 512x2y2 − 512y3 + 256y4 = 0.

Fig. 10. Example 10.55
256−x+2x2−2x3+x4− 55

64y+
2xy − 2x2y + 119

64 y
2 − 2xy2 + 2x2y2 − 2y3 + y4 = 0.

Fig. 11. IA on power form. Fig. 12. IA on power form plus first derivative informa-
tion.

Numbers of operations (+,−,×,÷) were recorded, rather than CPU times because these quantities
are independent of processor or implementation; aC language implementation would have been much
quicker than theMathematica implementation we used for testing.1 The numbers of square root
operations involved in Gopalsamy’s method and its related derivative methods were also recorded for

1 Our code can be obtained by emailing the authors at shh@math.zju.edu.cn.
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Fig. 13. IA on power form plus recursive derivative
information.

Fig. 14. IA on Horner formx first.

Fig. 15. IA on Horner formx first, plus first derivative
information.

Fig. 16. IA on Horner formx first, plus recursive
derivative information.

completeness. However, these numbers were insignificant compared to the numbers of additions and
multiplications.

Note that several of the methods use matrix manipulations including multiplication and inverse. Since
some of the matrices involved are in triangular form, and almost half of the elements are zero, we use
“shortened multiplication” which avoids operations involving addition of zeros, in order to reduce the
number of of basic operations involved. In a similar way, the number of basic operations involved in
computing inverses can also be reduced. The number of operations depends on the choice of algorithm
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Fig. 17. IA on Horner formy first. Fig. 18. IA on Horner formy first, plus first derivative
information.

Fig. 19. IA on Horner formy first, plus recursive
derivative information.

Fig. 20. IA on Bernstein form.

for computing inverse, which we have based on Gaussian elimination. Transposition does not require any
operations.

4.2. Results

4.2.1. Description
Tables 3–12 list the measured numbers of arithmetic operations for Examples 1–10 respectively, using

each of the methods described before.
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Fig. 21. IA on Bernstein form plus first derivative
information.

Fig. 22. IA on Bernstein form plus recursive derivative
information.

Fig. 23. Representative picture for all ‘good’ methods
(see text).

Fig. 24. Gopalsamy’s method.

For convenience, we use the following notation:

IAP interval arithmetic on power form;
IAPD interval arithmetic on power form plus first derivative information;
IAPRD interval arithmetic on power form plus recursive derivative information;
IAHX interval arithmetic on Horner formx first;
IAHXD interval arithmetic on Horner form,x first, plus first derivative information;
IAHXRD interval arithmetic on Horner form,x first, plus recursive derivative information;
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Fig. 25. Gopalsamy’s method plus first derivative infor-
mation.

Fig. 26. Gopalsamy’s method plus recursive derivative
information.

IAHY interval arithmetic on Horner formy first;
IAHYD interval arithmetic on Horner form,y first, plus first derivative information;
IAHYRD interval arithmetic on Horner form,y first, plus recursive derivative information;
IAB interval arithmetic on Bernstein form;
IABD interval arithmetic on Bernstein form plus first derivative information;
IABRD interval arithmetic on Bernstein form plus recursive derivative information;
IAC interval arithmetic on centred form;
IACD interval arithmetic on centred form plus first derivative information;
IACRD interval arithmetic on centred form plus recursive derivative information;
AA affine arithmetic method;
AAD affine arithmetic method plus first derivative information;
AARD affine arithmetic method plus recursive derivative information;
BC Bernstein coefficient method;
BCD Bernstein coefficient method plus first derivative information;
BCRD Bernstein coefficient method plus recursive derivative information;
T Taubin’s method;
TD Taubin’s method plus first derivative information.
TRD Taubin’s method plus recursive derivative information.
R Rivlin’s method;
RD Rivlin’s method plus first derivative information.
RRD Rivlin’s method plus recursive derivative information.
G Gopalsamy’s method;
GD Gopalsamy’s method plus first derivative information;
GRD Gopalsamy’s method plus recursive derivative information;
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4.2.2. Analysis
Our observations from the tabulated results concerning the relative accuracy and speed of these

methods are:

• Generally, IAP, IAB, IAHX, IAHY methods are not as accurate as IAC, AA, BC, T, R and G.
• IAP, IAB, IAHX, IAHY methods generally, but not invariably, need more arithmetic operations than

the IAC, AA, BC, T and R (Table 6 shows a counterexample).
• IAHX and IAHY generally need less arithmetic operations than IAP or IAB; generally, but not

invariably, they are more accurate than IAP but less so than IAB.
• The accuracies of IACRD, AARD, BCRD, TRD and RRD are very similar, but BCRD is usually

slightly more accurate.
• The number of arithmetic operations involved in IACRD, AARD, BCRD, TRD and RRD are very

similar, but AARD usually needs slightly less arithmetic operations.
• G is less accurate than IAC, AA, BC, T or R, but is usually more accurate than IAP, IAB, IAHX,

IAHY methods.
• G needs more arithmetic operations than IAC, AA, BC, T or R, and generally, but not invariably,

needs more arithmetic operations than IAP, IAB, IAHX, IAHY methods.
• Including first derivative information improves classification of IAP, IAB, IAHX, IAHY and G

methods, but not necessarily the numbers of arithmetic operations.
• Including first derivative information slightly improves classification of IAC, AA, T and R methods,

but not necessarily the numbers of arithmetic operations.
• Including first derivative information does not affect the classification of the BC method, but only

increases the numbers of arithmetic operations.
• Including recursive derivative information greatly improves classification of IAP, IAB, IAHX, IAHY

and G methods and often greatly reduces the numbers of arithmetic operations as well.
• Including recursive derivative information slightly improves the classification of IAC, AA, T and R

methods and generally reduces the numbers of arithmetic operations as well.
• Including recursive derivative information does not improve the classification of the BC method but

generally reduces the numbers of arithmetic operations.
• Function range analysis based subdivision methods have no difficulties in handling cusps, tangencies,

self-intersections and multiple closed loops, unlike continuation methods.

5. Conclusions

Clearly, a small set of examples cannot lead to definitive statements about the relative merits of each
method in every possible case. Indeed, we can see that for differing test cases, differing methods are
best. Nevertheless, these carefully chosen test cases do demonstrate some general conclusions, which we
believe will be generally useful.

Summarizing the experimental observations above, we note that the IAC, AA, BC, T, and R methods,
and their related derivative methods, are roughly similar in performance, and are generally better than
the G, IAP, IAB, IAHX, and IAHY methods.

Our recommendation for practical applications is that the AARD (affine arithmetic with recursive
derivative information) method is probably the best overall choice for accuracy and computational
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efficiency, but the IACRD, BCRD, TRD and RRD methods are very similar in terms of accuracy and
computational efficiency. However, the IACRD method is easiest to implement, while AARD, BCRD,
TRD and RRD are a little more difficult.
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