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Abstract 

A method for modelling perfectly plastic metal flow within the forsing process. using the well-known 
upper-bound energy formulation. is presented. The  domain of the metal is described by a tetrahedral 
mesh, in which the velocity field is piecewise linear. I; is shown that this formulation is significantly 
faster than existing finite element models, arid hence can bc used for early validation. 
The  formulation can br reversed readily and an algorithm is discussed which allows riodes to detach 
from the die surface in an order which optimizes the similarity of thc reverse process LO ilscr-specified 
shapes. 
Keywords : Forging, Modelling, Upper-bound 

1 Introduction 

TEUBA stands for "Tetrahedral elemental upper- 
bourid analysis". I t  is intended that the 'I'EUBA 
system will predict metal flow in 3-D forgings, i n  
a way which is fast! approximate and easy to use. 
It will complement the existing finite-element mod- 
elling tools which are significantly slow, and arc dif- 
ficult to learn to use. The  I'EUU.4 analysis is based 
loosely on that of the existing University of Bath 2- 
D axisymmetric forging modeller '.UBET" (l) ,  but 
uses a different method for representing the forging 
as discrcte rlernrrits. Alongside the development of 
the 3-D 'I'EL'BA modeller, there is also a 2-D pl;ine- 
strain form of TETJ'RA which is being written. It 
is also intenckd thar. TEUBA will have a means of 
generating the .riversc steps in a forging sequence 
such that the preform shape can be optimized to be 
similar to a specified shape. 

2 Philosophy 

The TEUBA approach involves modelling the flow 
of a plastic material, when it is bcing drivcn by 
a rigid moving boundary. I n  accordanre with the 
upper-bound formulation the required velocity field 
~ ( x )  is the one that minimizes tlir powcr integral 
(subject to the given boundary condiLions). 'This 
integral is 

(1) 
A 

I[u(x)] = [i11i,1]2 dv.  

where D is the initial domain occupied by the mate- 
rial, the summation notation is adopted so that  the 

indices i and j are allowed LO sum from 1 LO 3 and 

c i j  . = - 1 (- aui + 2) , 
2 d t j  

is the strain-rate tensor. 
This nlusr. be done subject to the vector veloc- 
ity field u satisfying the incompressibility equation, 
that is! 

Many people have used the uppcr-bound method LO 

invrstigak thr  flow of matcrial i n  the forging pro- 
cess, for example (1) where th r  axisynirnetric work- 
piece is divided into elements using a simple bounc- 
ing algorithm, and these are investigaled using a 
m a s  conservation rule. More recently a finite elc- 
ment formulation of the upper-bound method was  
used by (3) to investigate limit analysis of defective 
cylindrical shells under internal pressure. Their ba- 
sic formulation is followed in the current papcr. with 
so rn e i m port ant si m p I i fi ca t ions. 
'I'he system is driven by fixed boundary conditions 
wlicre tht. cornpoiwit of tlic velocity which is nor- 
riial to the die surface must have the same velocity 
a r h r  die. The components of the velocity a t  the 
boundary that are tangential to the die surface may 
Lc subject to frictional forccs. 
The 3-D version of TEUBA uses a tetrahedral mesh 
to describe the domain occupied by the metal, and 
triangular shell elements to describe the geometries 
of the die surfaces. The  meshes are imported from 
a commercial tetrahedral mesher, which is also able 
to take care of re-meshing the metal domain at  a 
later stage in the forging process. 
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I%otii versioiis of TEUB.4 are heiiig iIeveIopmi i i i  (:  
011 R I!nis workstation. l 'hrre are riiaii~ siiiiiIaritii*s 
I)r:twt.en I tic 2- iiiid 3-D vcrsioris, so thi- rode is wri1,- 
ten for ail arbitrary 1iumbt:r of dimensioiis, and tIic 
diffcrciices are resolved during corn pilation. 

3 Mathematics 

In order to find the velocity field which minimizes 
the power integral (subject to the incompressibil- 
ity constraint.). the workpiece domain is split inLo a 
number of tetrahedral elements. The velocity fiinc- 
tiori is assumed to cake a linear form in  each o f  r-he 
elements. That is. in element 1 .  

j = l  

for 1 5 i 5 3: whcre KJ is the component of the 
velocity in the direction i a t  the j - th  tetrahedral 
vertex nodc. The function ~ is linear in element 
1: vanishing a t  all nodes except the node j where it 
takes the value 1.  
In order to approximate the rninimlim value of the 
power functional given in equatioii (1) it is necessary 
to find thc minirrium value of the discrete approxi- 
rnatiori to 

F 

I = !  

where E is the number of elements arid 11 is the 
approximalion to I in the domain DI of elzrnent 1 .  
In the discretized system, the functional 11 may be 
considered as a function of the nodal velocities by, 
and thus a stationary value may be found on solving 
tlie sirnulLaritwus equations 

for 1 5 a 5 3 and b = 1,2 , .  . . .% (referring to a 

global nurnbcriiig of the N nodcs). Tlic fuiictiorial 
I is conves and so the stationary point is assured to 
be a minimum. and if a search is started a t  a sen- 
sible place then system will always converge LO the 
global minimum. 
In the discrelized system the first derivatives of Lhe 
velocity field can thus be represented as 

adk 4 -=CK'-. au, 
6 X j  azJ 

k = l  

which implice that tlie discrete versioii of the straiii- 
rate teiisor in  an element is 

The functional 11 in each element 1 can therefore be 
represented in the discrete form as. 

where k ranges over thc four iiodes of element 1 and 
the riorriairi DI h a s  voluriie .-I;. The advantage 1;f 

using linear basis functions can be seen in  r h  eqiia- 
tion above, because each of ~ ' n e  first derivatives of 
the basis functions are constants which can be re- 
moved from the integration operation. 
Considcr the expresion for ?L. ax; When this is ditfer- 
entiated with respect to a nodal velocity, clie r e w i t  
is 

'I'hus the variation of the functional I wi1.h respect 
to a n y  of the nodal velocity coiiiponcrit.s may be ra l -  
culated to be 

The  expression [ i i j i i j ] -  obviously depeiids on all 
the valiics { V,''}? biit sincc the dependence is highly 
rionliriear: values are guessed, and the solution is ob- 
tained iteratively. For an element. i, the cxlciilated 
energy is defined by 

bL-1 = 

wlicre k varies over thc four  nodes of the elerneiir. 
and all the values { rl,"} are guessed or known values 
from a previous iteration. Thi: variation of elernriiir 
i with respect. to is thus 

and  the variation of the entire power integral I is a 
simple sum of these variations. that  is: 

although only those elements which are adjacent ro 
node 6 will have a non-zero Leriii in this sum. 
Thus an equation can be written down for the vari- 
ation of each of the components of each of the nodal 
velocities. These equations are linear (except for the 
functions Wl) and can therefore be solved iteratively 
using a sparse matrix solver. The nodes in the mesh 
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caii I )+ -  przpmccswil i l l  S I ich  i i  way 1 . l i ; i I .  the I,and- 
widr.11 and profile i i r c  niinirtiiz~~d. and so a tix11ded 
sFriiri-lctric Cholcsky iiixl rix solvcr is i i s i d  to solvt: 
cach set of sin~i~ltaneoiia lirwar cqiiatiorts. 
In the formulation so far, no allowance h.as been 
made for the iwomprpssibility of the material. as 
represented by equation (2 j .  This resrxnint is tack- 
led by making use of the penalty funciion meihod. 
In the TEUBA modeller it is necessary LO force the 
metal flow to he divergence free (incompressible). 
and for this purpose it is necessary to  impose the 
condition tZa = g! everywhere in D. With a lir.tle 
thought it can be seen thar. 

zcia = 0 in D e (ke,,)' dv = 0. 

'The proof from left to r ight  is obvious since the intc- 
grand on the riglithand-side is a vanishing function. 
The reverse proof can be seen from the fact that the 
integrand is .z non-negative function. and if its inte- 
gidl is zero it must vanish everywhere in the domain 
D. 
For the purposes of the iterative scheme (described 
in ttie previous section) the functional 

3 

i=! i = l  

will be considered. Siricc the minimization of either 
funct ional  I or .I requires a n  iterative scheme, the 
value of the parameter X can be varicd at each step 
of the calculation. If X is small then it will be ini- 
possible to satisfy the incomprc-sihility condition: 
but as X - .x the numerical errors incurred by the 
presence of a large numbers in the matrix solver will 
he expected to swamp the scheme. 
1x1 ordcr to find a sensible value of X to IISC in t h P  
c~lciilation one must bc able to measure the success 
of ttie penalty function, and vary the value accord- 
ingly. At the start  of the iterative scherric, values 
are set for the two pararncters X and 8 .  These val- 
ues are arbitrary, and are determined empirically. 
.4t the end of each step of the calculation, the com- 
presni b i l i i y ,  

K = [ti,]' dv 

is calculated. I f  the compressibility is sigiiificaiit 
then the penalty term X is multiplied by the arbi- 
trary factor B and the next estimate of the itera- 
tion is calculated. If the compressibility converges 
to a value (which should be close to zero). then the 
penalty factor X is held constant for the rest  of the 
calculation - that  is, until the velocity field conver- 
gences. 
A mesh is read in from the tetrahedral niesher after 
it h a s  been processed for bandwidlh reduction, using 

t . 1 ~  (iihhs, Pool arid St.mclirneyc:r algorithm. sec (2 ) .  
1 t i  I lie prtlscitr stage! of developnicnt sticking fric- 
tion houticlary conditioris are si:t ailtomatically 011 

the top arid bottom surfaces. 'This restraint means 
that only simple upset.tiiig can he investigated, but 
TECB.-\ is soon to be upgraded to include a full die 
description. a contact recognition algorithm, and a 
friction model. This means that  industrial compc- 
nents with a high degree of geometric complexity 
can be investigated with TEUBA: such as can be 
modelled by coniniercial finite element forging sofi- 
ware. 
All free nodal velocity components are set according 
to their position from the cencrc of gravity with a 
small random variation (in order to avoid the  siuia- 
tion where Wl = 0 for some I .  when the denominator 
of 11 becomes singular). Initial values are choscri 
for X and 8. T h e  iterar.ion then proceeds with A 
multiplying by a factor of !I on each step unt i l  the 
compresszbility convergences to zero. The iteration 
then continues with a constant value of X until the 
velocity field converges too. 
After the mesh h a s  been moved according to the 
velocity field a t  each node, then the iteraiion pro- 
cedure is started again. For this new increment the 
old values of the velocity field are reused (since they 
must be quite close to the values that are to be cal- 
culated next). 

4 P-erformance 

Early indications are that thc TET,;BX modeller is 
fast, and reasonably accurate. Obviously its d i s  
advanLage when compared with full finite element 
modellers is that  the crudeness of the algorithm 
Icads to a lack of accuracy and detail. Several simple 
examples have alrc:ndy t m n  run using the TEI:U.A 
I r iod 1: I I e r . 
Oite cxainplc involved modelling ttie upsctting of a 
cylinder to half of it.s original height and coniparirig 
against the IJnL'I' code. AII axisymmetric UBE1' 
calculation was run first and a similar (but three- 
dimcasional) TKCRA calculation proceeded. Both 
examples used the yield stress of medium carbon 
steel for load prediction and were performed by a 
I!nix workstation. Both upsetting calculations took 
about 20 seconds to run .  and TEUBA was slightly 
faster (despite the fact that  UBET effectively works 
in  two dirrieiisions). The  load predictions (which are 
upper-lmund estimates) from thc  two programs de- 
viated froiii each 0 t h  by a maximum of about. 5s1 
duriiig the complete operation. 
A secorid esarriplc involved the plane-strain lipset- 
ting of a rectangle of material. Here the commercial 
finite element package was used for the triangular 
meshing, and the comparison. The  mesh had 258 
nodes and it was found that the finite element row 
tine took 67 increments to reduce it by a quarter 
of its height. The 2-D version of TEUBA was ac- 
cordingly run with the same number of increments. 
It was found that the finite element code took 1 
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5 Reversibility 

lr. can he proved rhar [he upper-bound is rwersitile 
in a coriliiiuuus sense1 hilt i r  will ohvioiisly fail over 
a larse tirii+.lcep because the velocity mitiponi:ncs 
will differ grrarly. Various authors .  including (4) 
have siicr~~cfiill~ iinplcni~-nted a reverse niodel by 
iterating back and  forsh ovcr the  time-srep. 
T h e  rrtairi problem with ~liese riiodels is deciding 
when nodm shoiild become drtxched from t.he die 
surface. .4 Igorithiris involving aiirface pressure have 
been used. bur. seem to have little physical reason- 
i n s  bchinrl t , lvm.  T h c  method iiscd hy ( 4 )  in rhrir 
asisymiiirtric analysis w a j  t o  step the.  fr>r$rig bark- 
wards for racli possibility of a node detaching. l.l+ 
iiig a .s/iup. rorl l .plcx/ tg  jur:tor they then coniparcil 
t h e  resulting geometries t o  see wliicti c m r  was I l i fJS l  

like a cylinder. and Look this route as bein.; the ideal 
reverse incrrmriit.  '.I'hus the prclfarm shape was al- 
wa!s iw;surt*i.l r . 0  Ix IikP a cylinder [which is a n  ideal 
s~.m:k sli;rpp for asisyniiiietric forging j .  
Therc art; olwioiis complications when ext,ending 
this sfdivirw tr.1 thrw diirwnsions. hilt. i t  is possiblc. 
' l h c  ideal forging stock shape  (c\..linder. cutioirl etc. )  

6 Conclusion 
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Figure 1: The picture on the  left shows a TEIIBX plain-strain upset t ins  during the calculation. while the one 
on the  right. is the  rcsiilt of reversing the  procctss. ( T h e  circ1t.s are  for reference to the initial d i a p e ) .  
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