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Abstract

A method for modelling perfectly plastic metal flow within the forging process. using the well-known
upper-bound energy formulation. is presented. The domain of the metal is described by a tetrahedral
mesh, in which the velocity field is piecewise linear. It is shown that this formulation is significantly
faster than existing finite element models, and hence can be used for early validation.

The formulation can be reversed readily and an algorithm is discussed which allows nodes to detach
from the die surface in an order which optimizes the similarity of the reverse process Lo user-specified

shapes.
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1 Introduction

TEUBA stands for “Tetrahedral elemental upper-
bound analysis”. It is intended that the TEUBA
system will predict metal flow in 3-D forgings, in
a way which is fast, approximate and easy to use.
It will complement the existing finite-element mod-
elling tools which are significantly slow, and are dif-
ficult to learn to use. The TEUBA analysis is based
loosely on that of the existing University of Bath 2-
D axisymmetric forging modeller “UBET” (1), but
uses a different method for representing the forging
as discrete elements. Alongside the development of
the 3-D TEUBA modeller, there is also a 2-D pliane-
strain form of TEUBA which is being written. It
is also intended that TEUBA will have a means of
generating Lhe're'versc steps in a forging sequence
such that the preform shape can be optimized to be
similar to a specified shape.

2 Philosophy

The TEUBA approach involves modelling the flow
of a plastic material, when it is being driven by
a rigid moving boundary. In accordance with the
upper-bound formulation the required velocity field
u(x) is the one that minimizes the power integral
(subject to the given boundary conditions). This
integral is

I[u(x)) =/D[é,-jé,-1]% dv. (1)

where D is the initial domain occupied by the mate-
rial, the summation notation is adopted so that the
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indices i and j are allowed 10 sum from 1 to 3 and
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is the strain-rate tensor.

This must be done subject to the vector veloc-
ity field u satisfying the incompressibility equation,

that is,
Zs Ou;
s = ! = . \
(Il i—l .Il' 0 (21

Many people have used the upper-bound method to
investigate the flow of material in the forging pro-
cess, for example (1) where the axisyminetric work-
piece is divided into elements using a simple bounc-
ing algorithm, and these are investigated using a
mass conservation rule. More recently a finite ele-
ment formulation of the upper-bound method was
used by (3) to investigate limit analysis of defective
cylindrical shells under internal pressure. Their ba-
sic formulation is followed in the current paper. with
some important simplifications.

The system is driven by fixed boundary conditions
where the compounent of the velocity which is nor-
mal to the die surface must have the same velocity
as the die. The components of the velocity at the
boundary that are tangential to the die surface may
be subject to frictional forces.

The 3-D version of TEUBA uses a tetrahedral mesh
to describe the domain occupied by the metal, and
triangular shell elements to describe the geometries
of the die surfaces. The meshes are imported from
a commercial tetrahedral mesher, which is also able
to take care of re-meshing the metal domain at a
later stage in the forging process.

W

245



Both versions of TEUBA are being developed in
on a Unix workstation. There are many similaritics
hetween the 2- and 3-D versions, so the code is wril-
ten for an arbitrary number of dimensions, and the
differences are resolved during compilation.

3 Mathematics

In order to find the velocity field which minimizes
the power integral (subject to the incompressibil-
ity constraint). the workpiece domain is split into a
number of tetrahedral elements. The velocity func-
tion is assumned to take a linear form in each of the
elements. That is. in element /.
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for 1 < ¢ < 3, where V] is the component of the
velocity in the direction i at the j-th tetrahedral
vertex node. The function ¢/ is linear in element
[, vanishing at all nodes except the node j where it
takes the value 1.

In order to approximate the minimim value of the
power functional given in equation (1) it is necessary
to find the minimum value of the discrete approxi-

mation to £
u(x)] = Z 11,
=1

where £ is the number of elements and I; is the
approximation to [ in the domain L of element (.
In the discretized system, the functional [; may be
considered as a function of the nodal velocities V7,
and thus a stationary value may be found on solving
the simultaneous equations

d j

sy [1AWN] =0

for ]l < a<3andb=1,2,...N (referring to a
global numbering of the N nodes). The functional
I is convex and so the stationary point is assured to
be a minimum, and if a search is started at a sen-
sible place then system will always converge to the
global minimum.

In the discretized system the first derivatives of the
velocity field can thus be represented as

Ou; N, 400
b P

which implies that the discrete version of the strain-
rale tensor in an element is

d¢* . do*
lj 2 Z <VL + ‘/JL 61‘;) .

The functional [; in each element { can therefore be
represented in the discrete form as,
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where k ranges over the four nodes of element { and
the domain D; has volume A4;. The advantage of
using linear basis functions can be seen in the equa-
tion above, because each of the first derivatives of
the basis functions are constants which can be re-
moved from the integration operation.

Consider the expression for g—‘;* When this is ditfer-
entiated with respect to a nodal velocity, the result

Is
é (Oy ) dot
=5\ 57— ) = 7—bia.
Ve \ 9z; Oz;

‘Thus the variation of the functional [ with respect
to any of the nodal velocity components may be cal-
culated to be

o1
m = W’Z‘/I; \/t,](;) dv
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The expression [éi]‘é.‘j]_% obviously depends on all
the values {V/}, but since the dependence is highly
nonlinear, values are guessed, and the solution is ob-
tained iteratively. For an element [, the calculated
energy is defined by

W = \/E','jé,'j
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where k varies over the four nodes of the element.
and all the values {V/}} are guessed or known values
from a previous iteration. The variation of elememt
[ with respect to V} is thus

23 8ot de*
_ rk -k
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and the variation of the entire power integral / is a
simple sum of these variations, that is,
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although only those elements which are adjacent to
node 6 will have a non-zero term in this sum.

Thus an equation can be written down for the vari-
ation of each of the components of each of the nodal
velocities. These equations are linear (except for the
functions W;) and can therefore be solved iteratively
using a sparse matrix solver. The nodes in the mesh



can be preprocessed in such a way that the band-
width and profile are minimized, and so a banded
symmetric Cholesky matrix solver is used to solve
cach set of simultaneous linear equations.

In the formulation so far, no allowance has been
made for the incompressibility of the material, as
represented by equation (2). This restraint is tack-
led by making use of the penalty function method.
In the TEUBA modeller it is necessary Lo force the
metal flow to he divergence free (incompressible),
and for this purpose it is necessary to impose the
condition €,; = 0, everywhere in D. With a little
thought it can be seen thar

ie,-,:o inD <= /,,(i‘if)zdv=0-

i=1 i=1

The proof from left to right is obvious since the inte-
grand on the righthand-side is a vanishing function.
The reverse proof can be seen from the fact that the
integrand is a non-negative function, and if its inte-
gial is zero it must vanish everywhere in the domain
D.

For the purposes of the iterative scheme (described
in the previous section) the functional

J(u):/D\/é,‘jé.'j dv+/\./g(tﬁ)2dv!

will be considered. Since the minimization of either
functional I or .J requires an iterative scheme, the
value of the parameter A can be varicd at each step
of the calculation. If A is small then it will be im-
possible to satisfy the incompressibility condition,
but as A — > the numerical errors incurred by the
presence of a large numbers in the matrix solver will
be expected to swamp the scheme.

In order to find a sensible value of A to use in the
calculation one must be able to measure the success
of the penalty function, and vary the value accord-
ingly. At the start of the iterative scheme, values
are set for the two paramcters A and §. These val-
ues are arbitrary, and are determined empirically.
At the end of each step of the calculation, the com-
pressibility,

K = [E,‘,‘]z dv
D
E a4 P’ 2
= 2 A’[sz'kb‘;r-] ‘
i=1 i=1 k=1 !

is calculated. If the compressibility is significant
then the penalty term X is multiplied by the arbi-
trary factor # and the next cstimate of the itera-
tion is calculated. If the compressibility converges
to a value (which should be close to zero), then the
penalty factor X is held constant for the rest of the
calculation - that is, until the velocity field conver-
gences.

A mesh is read in from the tetrahedral mesher after
it has been processed for bandwidth reduction, using

tha Gibbs, Pool and Stockmeyer algorithm, see (2).
{n the present stage of developmient sticking fric-
tion boundary conditions are s:t automatically on
the top and bottom surfaces. This restraint means
that only simple upsetting can be investigated, but
TEUBA is soon to be upgraded to include a full die
description. a contact recognition algorithm, and a
friction model. This means that industrial compo-
nents with a high degree of geometric complexity
can be investigated with TEUBA, such as can be
modelled by commercial finite element forging soft-
ware.

All free nodal velocity components are set according
to their position from the centre of gravity with a
small random variation (in order to avoid the situa-
tion where W, = 0 for some [, when the denominator
of I} becomes singular). Initial values are chosen
for A and #. The iteration then proceeds with A
multiplying by a factor of # on each step until the
compressibility convergences to zero. The iteration
then continues with a constant value of A until the
velocity field converges too.

After the mesh has been moved according to the
velocity field at each node, then the iteration pro-
cedure is started again. For this new increment the
old values of the velocity field are reused (since they
must be quite close to the values that are to be cal-
culated next).

4 Performance

Early indications are that the TEUBA modeller is
fast, and reasonably accurate. Obviously its dis-
advantage when compared with full finite element
modellers is that the crudeness of the algorithm
leads to a lack of accuracy and detail. Several simple
examples have already been run using the TEUBA
modeller.

One example involved modelling the upsetting of a
cylinder to half of its original height and comparing
against the UBLET code. Aun axisymmetric UBET
calculation was run first and a similar (but three-
dimensional) TEUBA calculation proceeded. Both
examples used the yield stress of medium carbon
steel for load prediction and were performed by a
Unix workstation. Both upsetting calculations took
about 20 seconds to run, and TEUBA was slightly
faster (despite the fact that UBET effectively works
in two dimensions). The load predictions (which are
upper-bound estimates) from the two programs de-
viated fromn each other by a maximum of about 5%
during the complete operation.

A second example involved the plane-strain upset-
ting of a rectangle of material. Here the commercial
finite element package was used for the triangular
meshing, and the comparison. The mesh had 25§
nodes and it was found that the finite element rou-
tine took 67 increments to reduce it by a quarter
of its height. The 2-D version of TEUBA was ac-
cordingly run with the same number of increments.
It was found that the finite element code took 1
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minute of CPU to perform the first increment and a
total CPLU the of 20 minutes, while TEUBA took
3 seconds to eomplete the initial increment and 40
seconds to complete the operation. The 'TEUBA
code was also reversed. and the result can be seen
in Figure 1. It is expected that TEUBA will be
slightly slower once a contact recognition algorithm
is introduced.

A 3-D example was also run. A finite element mod-
eller took a rotal 22 minutes to upset a square prism
mesh (with 407 nodes) by a tenth of its height.
TEUBA took 5 minutes to duplicate the calcula-
tion. in the zame number of increments.

5 Reversibility

It. can be proved that the upper-bound is reversible
in a continuous sense, but it will nbviously fail over
a large time-step because the velocity components
will differ greatly. Various authors. including (4}
have suceessfully implemented a reverse model by
iterating back and forth over the time-step.

The main problem with these models is deciding
when nodes should become detached from the die
surface. Algorithms involving surface pressure have
been used. but seem to have little physical reason-
ing behind them. The method used by (4) in their
axisymimetric analysis was to step the forging back-
wards for each possibility of a node detaching. Us-
ing a shepr romplerdy foctor they then compared
the resulting geometries to see which one was most
like a exlinder. and vook this route as being the ideal
reverse increment. Thus the preform shape was al-
ways assured to be like a eylinder (which is an ideal
stock shape for axisymuuetric forging).

There are obvious complications when extending
this scheme to three dimensions. but it is possible.
The ideal forging stock shape {(cxlinder, cuboid ete.)
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can be selected by the forger, and at cuell peverse
mzrement the possible shapes can be tested against
the ideal shape using a shape compurison function.
Suitable functions for this shape comparison are cur-
rently bring tested.

6 Conclusion

A formulation bas been invented for the kernel of
the TET'BA modeiler. The basic machinery of in-
rearal minimisation (subject to incompressibility
with piecewise linear elements s all in place. A
number of features are being added to this kernel
so rhar the modeller can be used for real industrial
forging examples by the novice user. Sull more wark
needs to be done in order to have a modeller which
works qutomatically in teverse maode.
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Figure 1: The picture on the left shows a TEUBA plain-strain upsetting during the calculation. while the one
on the right is the result of reversing the process. (The circles are for reference to the initial shape).
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