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Studies in the Robustness of
Multidimensional Scaling:
Euclidean Models and Simulation

Studies

ROBIN SIBSON, ADRIAN BOWYER and CLIVE OSMOND

School of Mathematics, University of Bath, England.
(Received Norember 5, 198101)

This series of papers is devoted 1o the mvestigation of the extent to which the accuracy oi
operation of multidimensional scaling can be put onto a quantitative footing. In this third
and final paper, four probabilistic models for the generation of euclidean-distance-like
dissimilarity functions are proposed: these models reflect some of the ways in which
dissimilarities actually arise, and allow such effects as dependence between dissimilarities to
be studied. Using these models. simulation experiments are carried out to assess the response
of both classical and ordinal (non-metric) scaling to errors. with procrustes statistics being
used to measure accuracy of recovery. A further scaling method. least squares scaling. is
discusscd briefly and shown to display empirically a useful combination of properties, as is a
technique used to preprocess the dissimilarity matrix

KEY WORDS- Multidimensional scaling, robustness, procrustes statistics, euclidean
models, simulation.

1. INTRODUCTION

In this paper the robustness—the response to errors in the data—of both
classical scaling and the Shepard-Kruskal method of ordinal (“non-
metric”) scaling is examined by simulation methods. Our approach to the
study of robustness is based on the idea of assessing quantitatively the
success of a scaling method in recovering known configurations. On exact
data classical scaling does this exactly, and the ordinal method is almost
exact: it is when the data contain errors that the exercisc becomes an
interesting one. Studies of this kind have been carried out by many
authors; we give a brief review below. Apart from the scale of the
experimentation, two main features distinguish the present study from this
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earlier work. The first is the use of procrustes statistics to measure degree
of fit: it is surprising that this approach has not becn used in previous
simulation studies. The second distinguishing feature is the way error is
introduced into the data: our study includes work on dissimilarities
generated from probabilistic models whose structure is designed to capture
some features of the way errors actually arise in practice, and in particular
to throw some light on the effects of dependence between errors.

The study falls into two major parts. The first treats classical scaling in
some detail; the second part compares various different scaling methods
on the same data. The scaling methods used are classical scaling, ordinal
scaling, and least-squares scaling; a preprocessing transformation of data
to specified distributional form is also used.

We follow the notation and terminolegy of the two previous papers in
this series: Sibson (1978), where an account of procrustes statistics may be
found; and Sibson (1979a). where an approximate analytical study of the
robustness of classical scaling is carried out. The latter paper contains a
brief description of the classical scaling method: an account of the ordinal
method 1s given by Kruskal (1964a,b): in this paper we assume familarity
with both methods. References to Sibson (1978, 19794} will sometimes be
made in the form, for example, I Theorem 4.3, 1T Lemma 33

2. PREVIOUS WORK AND THE ROLE OF THIS STUDY

Numerous simulation studies of various forms of multidimensional scaling
have appeared, almost entirely in the psychometric literature. Some of
these studies, such as that of Lingoes and Roskam (1973), have been
primarily concerned with the effectiveness of various numerical procedures
in reaching the true optimum quickly. This is an important technical
problem, but it will not be our concern here. We assume that all the
methods can be made to work with adequate efficiency and reliability in
practice, although we comment in passing on the “local optimum™
problem. We are concerned, as most previous studies have been, with the
accuracy of reconstruction effected by a method once it has, by its own
criteria, “worked properly”. The method most commonly employed to
assess this is the evaluation of the (squared) correlation between original
and reconstructed distances. Cohen and Jones (1974) point out a number
of objections to this: it is insensitive for similar configurations; the
displacement of a single point can produce a misleading value; it is
unaffected by the addition of a constant to either or both sets of distances;
it does not deal satisfactorily with the comparison of configurations of
differing dimensionality. We would summarise these objections by saying
that the correlation coefficient simply fails to relate properly to either the
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geometrical or the probabilistic aspects of the problem. Another measure
of success of reconstruction which has been used is the Shepard-Kruskal
stress achieved at optimality in the ordinal method. This seems 1o us to
reflect a misunderstanding of the rolc of the optimused stress function,
which measures the euclideanness of a set of ordinal data, and not the
oxtent 1o which the reconstruction matches the original configuration. The
approach we adopt, using procrustes statistics, avoids these criticisms. These
and other arguments for the use of an approach based on procrusies
statistics are presented by Gower (1971b). Gower and Banfield (1974)

s N

have explored this approach in a simulation study of classification
methods.

Nearly all the parameters and problem-dependent quantities occurring
in ordinal scaling have been varied in previous simulation studies to
determine their influence. Young (1970) examines the effect of the number
of points; Sherman (1972) looks at the effect of varying the Minkowski
metric parameter from which the interpoint distances are derived (but scc

tric p
whilst Wagenaa

Shepard. 1974, for some cautionary remarks on this) T
ror present in the
1

’s
and Padmos (1971} consider the amoiint of error
perturbations. Lingoes and Roskam (1973) compare the Shepard-Kruskal
method with the Guttman-Lingoes SSA—I method, but, as pointed out
above, mainly with a view to assessing algorithmic efficiency and
robustness. Spence (1972) compares the computer programs MDSCAL,
SSA-I, and TORSCA; his conclusions are that there is little to choose
between the methods, but that a sensible choice of initial configuration in
MDSCAL is important if the algorithm is to work properly. In an earlier
paper (Spence, 1970) he uses simulation methods to study the local
optimum problem. Spence and Graef (1974) and Isaac and Poor (1974)
discuss the problem of determining dimensionality in ordinal scaling.
Several papers have attempted to provide a measure of comparison for an
empirically-obtained stress value against the expected stress value
obtained from random rankings in ordinal scaling; such papers are those
of Klahr (1969), Spence and Ogilvie (1973). and Stenson and Knoll (1969).
Specific geometric configurations are used by Spaeth and Guthery (1969)
to test the recovery capability of the methods and to examine the
monotonicity criterion. Finally, Cohen and Jones (1974) consider a model,
motivated by psychological considerations, in which scaling performs a
reconstruction, given that different levels of importance are attached to
each dimension by a hypothetical subject.

We choose to approach the problem differently. We do not vary the
number of objects, which we keep at fifty. We work exclusively with
euclidean, not Minkowski, distance. We generate dissimilarities from
various different euclidean models, chosen so as to aliow various features
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of the error response to be examined. Starting from classical scaling we
establish the point at which it is inclined to break down and examine how
it compares with ordinal scaling and also with least-squares scaling. We

scaling.

3. FOUR EUCLIDEAN MODELS

Our approach to the study of robustness by simulation methods is based
on the view that in the majority of applications of scaling methods it is
not appropriate to assume that the observed dissimilarities differ from the
true interpoint distances by errors that are independent. There are
certainly a few cases where the assumption of independent errors is an
appropriate one; for example, it is argued by Sibson and Bowyer (1980)
that this is so in some problems arising in surveying and photogrammectry.
We consider one such madel for comparison purposes But these cases are
in the munority: n particular. 1t 15 clear that when disstmilarities or
similarities are calculated from objecis-by-attributes data (Sihson, 1972),
there will be substantiad depence imehved  Rather than setting up error
distributions by dccree. we establish simple. but practically relevant,
models for the generation of dissimilarities. and then investigate the
distributions which arise from these.

The first step in setting up the models 1s to generate a configuration.
We have taken fifty points as representing a typical medium-scale
problem, and we have not attempted to investigate by simulation the
effects of changing the number of points. In fact our configurations are
generated by realising fifty points uniformly and independently on the unit
disc of the appropriate dimensionality, but the only feature of real
significance is, in our view, that the configurations should be roughly
spherical with no special structure. We do not generate an unlimited
supply of new configurations. but we do use enough to provide a check
against being misled by the behaviour of any particular one.

Our first model arises from the study of binary data, of the type where
the coding of the states of each attribute into zero and one is arbitrary.
Objects described by such attributes are usually compared by counting the
number of attributes in which they differ. The resultant metric is
known as Hamming distance in communication theory; its normalised
complement with respect to the total number of attributes is a similarity
coefficient long familiar in numerical taxonomy as the simple matching
coefficient. For a fixed k-dimensional configuration. random Hamming
distances can be generated by randomly located hyperplanes each dividing
the space into two half-spaces arbitrarily coded as zero and one. If the
hyperplanes are realised from a Poisson hyperplane process. then (almost
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surely) each Hamming distance is well defined and finite, and has a
Poisson distribution whose parameter is the product of the euclidean
distance between the two points and the intensity of the process. the latter
being expiessed in suitable units. The Hamming distance is. in gcometrical
terms. the number of hyperplancs crossed in going from one point to the
other. Clearly the mean of a single Hamming distance distribution 1s
proportional to the correspon ing cuclidean distance, o the relationship
between Hamming distance and euclidean distance is roughly linear. It is
easy to see that as the intensity of the Poisson process becomes large the
relative values of the system of Hamming distances converge 1o those of
the euclidean distances (almost surely). However, the Hamming distances
are not independent; any two of them together have a bivariate Poisson
distribution (see Mardia, 1970) whosc parameters can easily be expressed
in geometrical terms. The system as a whole has as its joint distribution a
multivariate gencralisation of this bivariate Poisson distribution. All
cealisations of systems of Hamming distances arising from this joint
distribution automatically satisly thie metric incquality. Hammmg distance
is one of a large class of dissimilarity functions which do so (Gower,
19714). We call this model tor the generation of euchdean-iike distances
the Poisson hyperplane model. In practice it is convenient to condition on
the total number of hyperplanes involved, whereupon Poisson
distributions become binomial. and it is in this form that we actually
realise the model. Figure 3.1 shows the dependence of Hamming distance
on euclidean distance for a realisation from this binomial hyperplane
model. The points lie in a narrow band demonstrating the near-linearity of
the two distances. For smaller numbers of hyperplanes the width of the
band is correspondingly greater.

In order to be able to assess the effects of the dependence structure in
the Poisson hyperplane model we set up a model in which each individual
dissimilarity has the same distribution as in the Poisson hyperplane
model, but the dependence is removed. thereby producing a model with
independent errors. Thus in this model the dissimilarity d(x,y) has a
Poisson distribution with parameter Ze(x, v) where e(x,y) 1is euclidean
distance, and the d(x,y) are independent; that is. the joint distribution of
the d(x.v) is the product of the marginals, these marginals coinciding with
those arising in the hyperplane model. In practice it is convenient (o
match the form of the Poisson hyperplane model actually realised, namely
with conditioning on the total number of hyperplanes involved. This
requires the use of independent binomial distributions rather than
independent Poisson distributions. The dissimilarity-against-distance plots
arising from  this independent  binomial model are  visually

indistinguishable from those arising in the binomial hyperplane model.
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Our third model is chosen to provide some hold over the dissimilarities
which arise in problems where the data arc in objects-by-attributes form.
and where the attributes are binary, but in contrast to the first model,
where their  states may be coded 0 (="ubscnee™) 1(="presence”)
consistently over the whole system of attributes. A famihiar example arises
in plant ccology. where the objects are sites and the attributes are plant
species, recorded as present absent at each site. A widely-used coefficient

BINOMIAL HYPERPLANE DISSIMILARITY v EUCLIDEAN DISTANCE : 500 HYPERPLANES
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in such cases is Jaccard’s coefficient, which we consider in the form of
Jaccard distance, a dissimilarity coefficient (in fact a metric) obtained by
dividing Hamming distance by the number of attributes “present” in either
or both of the two objects under consideration. Jaccard distance takes
values in [0,1], and so its relationship to euclidean distance certainly
cannot be a linear one. A method of generating random Jaccard distances
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is as follows. Each attribute is “present” over a region of space interior to
a disc, whose radius is drawn from some fixed distribution and whose
centre is a point in a realisation of a Poisson point process. The condition
that the expected disc content be finite is cnough to ensure that Jaccard
distances are almost surely well-defined. (except for the rare case of two
points each lying in no discs at all, for which we assign the value unity).
This model actually has a certain simple-minded appeal as model for

th some of the

random spatial speciation, at least by comparison wi

alternatives! Clearly any particular version of the model is characterised
by the rate of the Poisson point process and the nature of the radius
distribution. It is easy to show that for a fixed radius distribution, the
relationship between euclidean distance and expected Jaccard distance is ¢
monotone one, with a decreasing fluctuation about the mcan as
intensity increases. The dependence of the monotone relationship on the
nature of the radius distribution is calculable in principle, but has no
simple form and is better treated as unknown. The model is thus well-

T
i

—
2
[

the
inc

adapted 1o distnguishing between classival and ordinal scaling methods.

2t
Figure 3.2 shows a tvpical dissimilarity-versus-distance plot. plots of the
cxpected dissimilarity against euchdean distance for the constant radis
distribution also show this concavity. Again, the form in which the model
is realised is a conditioned one, the total number of discs being fixed. We
call this the Jaccard distance model.

The fourth model relates to abuttal data. Data for scaling sometimes
arise in the form of a three-valued dissimilarity coefficient whose values
are “identical” (precisely between each object and itself), “neighbouring™.
and “not neighbouring”. Such data arise when the objects are really
regions rather than points, and it is abuttals between regions which are
recorded. Kendall (1971, 1974) has studied such data extensively. One
possible method of analysis is to represent regions by points, and then to
assign conventionalised regions, with the implied neighbour or contiguity
relationship, by way of the Dirichlet tessellation (see Green and Sibson,
1978); this construct assigns to each point the part of the space nearer to
it than to any other point. To reconstruct configurations directly from
abuttal data is not easy (McGinley, 1977), but can be made so by
replacing the original three-valued dissimilarity coefficient by an integer
valued one, the graph-theoretic distance or Wilkinson metric, which is the
minimum number of abuttals traversed along a path from one point to
another via abuttals. The distribution of euclidean distance between
contiguous points in a planar Poisson process is known (Miles. 1970;
Sibson, 1979b), but this knowledge does not extend to points at larger
Wilkinson distances. However it appears from simulation that the mean
cuclidcan distance is close to linear with the Wilkinson metric in two
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dimensions, which for compurational reasons 1is the only currently
practicable case. A simulation model may be obtained by taking a fixed
configuration of points between which the values are to be calculated. and
superimposing on this a realisation of a Poisson process. The Wilkinson
metric for the combined configuration may then be calculated from s
Dirichlet tessellation. In practice, of couise. only lmitely many additional
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points are generated; by generating these over 4 region considerably larger
than that occupied by the original configuration, edge effects are made
negligible. As the number of additional points increases it appears that, as
in the other models, the relative variability of the Wilkinson metric
decreases. Plots of the Wilkinson metric against cuclidean distance show
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hyperplane model. Like the other models this Wilkinson metric model 1s
realised 1 conditioned form.

4. PROCRUSTES STATISTICS

We always compare a recovered configuration Y with 1ts  parent
configuration X by using a procrustes statistic; a detailed account of the
theoty is given in Sibson (1978) The particular form of statistic emploved
allows Y to be fitted to X under the action of the group of similarity
transformations. that is, the group generaled by transiation. rotation,

reflexion. and uniform scale change. This leads to the statistic

P ry vyvT,1,2,2
i o {trace (Yo X XoYo ) ')
Gy(X.Y)=trace Xo X{—— —— v or
trace Y, Yq

where X,. ¥, are ALY tanslated 10 have centroid at ongin (see [ Section

nd we normalise this 1o

vy e (X0 X Yot oy
PstaLs =1 o U I
trace X X [ trace ¥, Y{

as in 1 Section 7. We use 74(X,Y), which lies in the range [0,1], for all
our comparisons. It is appropriate even with classical scaling to do this,
because in practice the approximately linear relation between dissimilarity
and distance is usually an unknown one.

5. THE SCALING METHODS

We consider in total three different scaling methods. The first of these is
classical scaling of which a brief description can be found in IT Section 1;
we do not duplicate it here.

The second method is the Shepard-Kruskal ordinal method as
described by Kruskal (1964a,b). Many implementations and variants of
this method exist. We have used exactly the original form of Kruskal’s
stress function, with the normalisation factor £d;}; ties were dealt with by
the primary treatment in which ties are an expression of ignorance and
can be broken without charge; and the global ordering of all values of the
dissimilarity coefficient was used. Kruskal’s optimisation procedure was
used. but in each case a variety of different initial configurations were tried
so as to avoid local optimum problems. We believe that the procedures
we have adopted make it most unlikely that any part of our study is
vitiated by the occurrence of local optima. It is to be noted that the
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availability of the original configuration for comparison by procrustes
analysis with the recovered configuration at each stage further reduces the
possibility of the occurrence of undetected local optima.

The third method we have considered has made Jitile previous
appearance in the literature; 1t is the method of least squares scaling. in
which the aim is to find a configuration minimising Z w;;(d;; — ;)% where
d;; is achieved distance, §;; is dissimilarity and wy; is a weight. The method
m in fact related to a specific statistical model- if the errors by which the
0;; differ from the d;; are N(0,1/w;;) and independent, then we are carrying
out maximum likelihood estimation. The particular appropriateness of this
for the independent binomial model is clear. We consider it here in a
general context, as a possible competitor for classical scaling and the
Shepard—Kruskal method. Obviously the least squares method s
“classical” in spirit, in that it artaches significance to the actual numerical
values of the dissimilarities, but in other respects—for example the user
de fmcd dimensionality and the need for an iterative approach— it has
Y v with the Shepard Kruskal method. The optimisation
prohlcm appears to b\, considerably better behaved than that arising in
the Shepard-Kruskal method, Sibson and Bowyer (19801 found that the
Fletcher—Reeves algorithm (Fletcher and Reeves, 1964) handles it very
successfully. Previous references to least squares scaling are as follows.
The least squares goodness of fit criterion is mentioned by Spaeth and
Guthery (1969), but there is no indication that they have considered any
actual method based upon it. Anderson (1971) also considers this idea, but
gives no indication of having implemented a practical method. Chang and
Lee (1973), following Sammon (1969) consider the special case where w,;
=1/0;;, a method Sammon cails “non-linear mapping”. The least squares
criterion occurs also in the Guttman—Lingoes methods (see Lingoes and
Roskam 1973, p. 20) but in a context not quite parallel to the present one.
Bloxom (1978) discusses a related but more complicated least squares
method requiring a special computational algorithm.

We also give consideration to a preprocessing method of potential value
in connection with classical scaling and least squares scaling. This is
essentially a technique suggested by Young (1970). The first reference we
are aware of for a method of this type is Benzécri (1964) his work is
discussed by Shepard (1966). Faced with ordinal data we may obtain a
provisional numerical structure by replacing the ranking numbers by
suitably chosen quantiles from the distribution we would expect the
distances to follow if the configuration were a sample of independent
observations from, say, a multivariate normal distribution. The system of
distances between independent points is not itself a system of independent
random variables, but it is dissociated (McGinley and Sibson, 1975;
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Silverman. 1976), and thus many parallel limit theorems apply: in
particular, the empirical distribution function of the distances converges to
the distribution of a single distance. and this provides the method with
some kind of justification. We explore the effects of assigning numerical
values to ordinal data under the assumption that the underlying
configuration 1s spherical normal and also under the assumpuion that it is

uniform on the disc.

6. THE SIMULATION EXPERIMENTS AND WHAT THEY SHOW

Scaling has been applied to data from all four of the p
introduced in Section 3. For the binomial hyperplane model these have
been related to original configurations lying in 2.3, 4,5 and 6 dimensions:
for the independent binomial model n 2 and 6 dimensions: but for the
others 1n 2 dimensions only. Extension to higher dimensions for the

Jaccard distance mode! would be straightforward, but the Wilkinson
| casily cxtended because the computation ol general -

i 15 iCh5 Ca 10T

6.1 Classical scaling
of the probabilistic models
1

mictric mode
dimensional tessellations is not yet available.

We have used a variety of parent configurations, generated as in Section
3, but there seems no great dependence upon them so they are not
recorded here individually.

For each model, in each dimensional space, we investigate the procustes
statistic at six different levels corresponding to different intensities of the
underlying Poisson process. For each model, level, and space we repeat
the experiment ten times with different realisations of the Poisson process.
There is one exception: for the Wilkinson metric model we use twenty
replications.

To compare different numbers of dimensions we make the
standardisation that the expected number of hyperplanes intersecting a
line segment of given length should be a constant. Thus in six dimensions
“1000 hyperplanes” should be interpreted as that number of hyperplanes
which will give the same expected number of cuts of a line segment of
length I, as would 1000 hyperplanes in two dimensions—generally this
number will be higher as the number of dimensions increases.

For the Jaccard distance model the radius of discs that cut the unit disc
is given an exponential distribution. We use the values 0.2 and 1.0 for the
mean of this distribution.

For the Wilkinson metric model extra points are added to the central
disc of radius two, the combination being tessellated in the square —4

<4 Both of these are precautionary measures to minimise edge

< v
=AY = e
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effects. Since the Wilkinson distance increases approximately as the square
root of the number of points in the unit disc we may use . (30 + 1 extra
points) to measure the level.

Mean values and sample standard deviations for the procrustes stanistic
are shown in Table I and the corresponding log log plots (Figures 6.1 6.4)
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FIGURE 6.1

provide an illuminating visual representation of the information in the
table.

The distribution of the procrustes statistic is known to be
approximately general 4% in type. see 1L, and so will have some skewness.
We plot and record the mean value over the ten or twenty replications.
The procrustes statistic increases with increasing dimensions; it decreases
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as the rates of the Poisson process increase; it is always smaller for the
larger of the two disc radii in the Jaccard distance model.

Binomial hyperplane model—the log/log plots are remarkably lincar.
with slope close to — 1. Thus the dominant term in the procrustes statistic
s constant no. of hyperplanes. where the constant depends upon the
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dimensionality, the standardisation used to compare dimensions, and the
procrustes statistic normalisation.

Independent binomial model—here again there is striking “constant/no.
of hyperplanes” behaviour for both numbers of dimensions chosen.
However the constant is quite different from that in the binomial
hyperplane model. For two dimensional configurations the difference is a
tactor of about two. This represents one of the most interesting resuits.
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The covariance structure has the effect of reducing the available
information, certainly in the case of two dimensions. For six dimensions
there is little difference.

Jaccard distance model—here the log/log plot 13 mu
hefore. There is the suggestion that classical scaling wi

uch flatter than
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exactly to reproduce the original configuration, and that the procrustes
statistic will not fall beneath a certain level dependent upon the disc
radius distribution.

Wilkinson metric model—the log/log plot is again quite linear with
slope about —1: This has been achieved only after the transformation of
the number of extra points. It would seem that the procrustes statistic
could be made arbitrarily small but more slowly, the behaviour being
1/v’/ {No. of exira points),
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WILKINSON METRIC MODEL : LOG - LOG PLOT
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Eigenvalue Spectra

One extra difference between the binomial hyperplane and independent
binomial models is that the former produces a more clearly determined
dimensionality of configuration. The covariance structure is at work to
provide this effect. Lingering perturbed zero eigenvalues for the
independent binomial model occur at both choices of dimensionality. The
information contained within these higher eigenvalues is available to be
exploited by ordinal scaling (see Section 6.2). For the Jaccard distance
model there are more positive perturbed eigenvalues as the rate of the
Poisson disc process increases. However, the third eigenvalue decreases in
loading so that it is possible to estimate the dimensionality of the parent
configuration as the rate increases. These effects are caused by the nen-
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linearity between Jaccard and Euclidean distances. which forces many
dissimilarities 1o be close and thus classical scaling tries to reproduce in
higher and higher numbers of dimensions The Wilkinson metric model
gives a clearly two-dimensional spectrum for which the perturbed zero
ecigenvalues drop away quite slowly.

Subsidiary techniques

The trace criterion, of 11 Section 2. for determining the dimensionality of
the configuration suggests that the sum of genuine positive eigenvalues
ought to be approximately equal to the sum of ail the eigenvalues. Since
we know the dimensionality of the original configuration it is possible to
examine the success of this criterion by simply looking at the eigenvalue
spectrum after classical scaling. We find. as might be expected, that the
success is much dependent upon the linearity of the dissimilarity with
euclidean distance. Thus the trace criterion works well for the in
binomial and binomial hyperplane models, especially at high numbers of
hyperplanes: 1t works fairly well for the Wilkinson melric model: it 1s very
poor for the taccard distance model. where the addition of dises forces
more and more of the perturbed zero eigenvalues to become positive. So
its use can only be recommended in the case when confidence can be
placed in the linearity of the dissimilarity with euclidean distance.

Much the same applies to the magnitude criterion. As in II Section 2 we
reject as spurious any positive eigenvalue whose magnitude does not
substantially exceed that of the largest negative eigenvalue. When the
perturbed zero eigenvalues are mainly positive the criterion will be useless,
and this happens when there is much non-cuclideanness. So in practice we
find that the correct dimensionality will be found only in the hyperplane.

and to a lesser extent. Wilkinson models.

L
)
o
&
=

+
t
|

6.2 Comparison of different scaling methods

Thirty dissimilarity matrices were derived, six from each of the
probabilistic models except the Jaccard distance model which contributed
twelve. These dissimilarity matrices were then used as input to the scaling
methods which were thus compared on the same data. We considered
only two-dimensional parent configurations. Although this involves only a
moderate number of dissimilarity matrices, other simulations have been
undertaken and the results seem similar enough to regard the values
presented as typical.

The scaling methods used were classical scaling, ordinal scaling, least
squares scaling with weights all 1, lcast squares scaling with weights 1/,
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Jaccard

distance
(constant
radius
0.2)

Wilkinson
metric

classical

ordinal

least squares (1)

least squares (1/4,,)
preprocessing (normal)
preprocessing (uniform)

classical

ordinal

least squares (1)
least squares (1/5;;)

20
0.8998
0.8999
0.9200
0.9162
0.9000
0.9000

7.1
0.0579
0.0506
0.0493
0.0458

50
0).8664
).8298
11.8595
0.9007
(0.7975
0.7972

15.8
0.0222
0.0175
0.0160
0.0155

No. of discs

100 200
0.7603 0.7775
0.7461 0.7359
0.9033 0.8433
0.8772 0.8291
0.7355 0.7172
0.7354 0.7170

/(504 extra points)

212 25.5
0.0095 0.0101
0.0076 0.0074
0.0076 0.0076
0.0070 0.0069

500
0.766%
0.6921
0.9525
0.9753
0.711¢8
07117

29.2
0.0111
0.0095
0.0093
0.0084

1000
0.7463
0.5922
0.9850
0.96006
0.6717
0.6713

30.8
0.0110
0.0100
0.0097
0.0091
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("non-linear mapping”). In addition we used the pre-processing techniquc
on all of the Jaccard dissimilarities. followed by classical scaling. Here it
was assumed that the parent configuration resembled a sample from a
spherical normal distribution. or alternatively a sample from a uniform
distribution on the disc, which is the actual parent distribution.

To avoid the problem of local optima. ordinal scaling was uscd both
with random starting configurations and with the configuration output by
classical scaling. The least squares methods were alwavs used with the
configuration output from classical scaling as a starting configuration.

For the Jaccard distance model one set of six dissimilarity matrices was
derived from a constant radius distribution of 0.2, the other set of six were
from an exponential disc radius distribution of mean 0.2. The convention
for recording Wilkinson metric model levels is maintained Where there
are n extra points added in the disc of radius 2 the level is recorded as
J(50+ ),

Preprocessing method: following the idea of III Section 5 we replace the
distance distribution. Under the assumption that the configuration 1s
spherically normally distributed with unit variances the distribution of
squared interpoint distances is approximately a 2y2 distribution. Under
the assumption that the configuration is uniformly distributed on a disc of
radius one, the interpoint distance density is (see e.g., Bartlett, 1964)
4r/mfcos™ 'sr—3r/(1—3r*)} (0=r=<2). Where there happen to be ties
the transformed values may be averaged. There is no point in considering
trace or magnitude criteria because we have imposed the dimensionality of
the reconstruction.

The results are summarised in Table 1I. We look at them first from the
point of view of the probabilistic models.

Binomial hyperplane model—all methods of scaling produce
reconstructions yielding procrustes statistics of similar low value. In
particular classical scaling compares well with the others. For higher
numbers of hyperplanes the least squares method with weights 1/0;; is
superior; this fits the theory of Section 5 concerning maximum likelihood
estimation.

Independent binomial model—in this case classical scaling is markedly
inferior to the other methods, which are able to exploit the information
contained in the perturbed zero eigenvalues that persist for this model.
The least squares methods work even better than ordinal scaling; and the
maximum likelihood theory is seen to be valid for higher numbers of
hyperplanes where weights 1/;; are again appropriate.

Jaccard distance model—variable radius of disc—classical scaling works
very badly compared to ordinal scaling. This is no surprise since the
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dissimilarity bears little resemblance to cuclidean distance. The least
squares methods fail for the same reason when the number of discs is
large. but are surprisingly good for moderate numbers. The performance
of classical scaling can be significantly improved by either of the pre-
processing transformations. especially that which assumes, correctly. an
underlying uniform distribution for the configuration.

Jaccard distance model —constant radius of disc all dissimilarities
corresponding to points at distance greater than 0.4 will be equal and
have value unity. The least squares methods are unable to cope with this
sparsity of differentiation and consistently producc bad reconstructions.
Classical scaling is slightly better and can be still improved by the
preprocessing transformations: although there is little to choose between
them. Ordinal scaling never produces a significantly worse reconstruction:
it is again clearly best for higher numbers of discs. However none of the
methods are able to produce reconstructions yiclding low procrustes
statistics due to the nature of the dissimilarity function,

o 15 a2 worthy (‘A‘HNPL’!‘:!(\!' for

Wilkinson metiie model
the other methods: although not superior to the other methods 1t 1s never
much worse [he least squares methods are gencrally superior. cspecially
when the weights are 1.5

We may also look at the results from the point of view of the scaling
methods.

Classical scaling— compares well with ordinal scaling for the most
cuclidean-like models except where there is much information in the
higher eigenvalues (independent binomial). For the least euclidean model
it compares unfavourably. as would be cxpected.

Least squares scaling —generally slightly superior to ordinal scaling for
the more euclidean models but certainly inferior for the Jaccard distance
model. The use of weights 1/0;; (that is, Sammon’s (1969) “nonlinear
mapping”) is usually to be recommended.

Ordinal scaling—even when there is useful information in the numerical
values of the dissimilarities, ordinal scaling is never significantly worse
than methods which take advantage of the numerical values, provided that
it is given a sensible starting configuration. About one-half of the runs
from random starts had not converged adequately within 50 iterations. It
is only on the Jaccard distance, constant radius model that ordinal scaling
really fails to obtain a reasonable reconstruction, and even there its
overall performance is better than that of other methods once the number
of discs becomes large. On the Jaccard distance, exponential radius model
the superiority of ordinal scaling over all alternative methods is very
apparent at larger numbers of discs.

Preprocessing techniques— these seemed quite successful in improving
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the performance of classical scaling. However, the marked superiority of
the (correct) uniform assumption as against the (incorrect) spherical
assumption in our experiments suggests that the technique may be quite
sensitive to the details of the underlying structure. Under the assumption
of normality there are too many large dissimilarities after transformation
and the dissimilarity/distance plot becomes blurred at higher distances,
lying in a more convex shape. The corresponding plot under the uniform
assumption produces the familiar cigar-shaped scatter.
The time taken by the algorithms varies as follows

classical < ordinal <lcast squares <ordinal <2 x ordinal

(random (classical (classical (random

start) start) start) start)

As a less serious footnote we mention the procrustes statistics obtained
when we reconstruct a map of Great Britain from the A.A. Handbook
familiar road distance table:

Classical scaling 0.02965
Ordinal scaling 0.03194
Least squares scaling (1) 0.02843
Least squares scaling (1/9;;) 0.02824

There is not much to choose between the methods in this case, although
classical scaling is more liable to misplace a few individual points badly.
Ordinal scaling from a random start is prone to produce local minimum
solutions with individual towns placed on the wrong side of the main
North-South axis, or, in one extreme case, with the whole of Scotland
reflected about this axis!

7. CONCLUSIONS

We have gained insight into the use of procrustes statistics, developing a
feel for the absolute values they take and the variability to be expected.
We have investigated the effect of dependence among dissimilarities and
seen that it may substantially influence accuracy of reconstruction. The
behaviour of the procrustes statistic after classical scaling has been clearly
related to the euclideanness of the dissimiliarity function. The comparative
experiments show the superiority of ordinal scaling, especially for non-
euclidean dissimilarity functions, from the relative value of the procrustes
statistics for the various methods. Both least squares scaling and the
preprocessing technique have been shown to possess useful properties.
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