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Studies in the Robustness of 
Multidimensional Scaling: 
Euclidean Models and Simulation 
Studies 

ROBIN SIBSON, ADRIAN BOWYER and CLlVE OSMOND 

Schooi of r.dathernaiics. Utiiersity of Bath, England. 

Tliic wrlex of papers is devurd  lo  the Invcsilgauon ot ~ h c  exten1 lo  wh~ch the acculaly ui 
operation of multidimensional scaling can be put onto a quantitativz fvo~ing. In [his thud 
and final paper. four probah~list~c models i j r  !he generatlo11 of euclidean-dislance-like 
dissimilarity functions are proposed: these models reflect somz of the ways in which 
dissimilarities actually arise. and allow such effects as dependence between dissimilarities to  
be studied. Using these models. simulation experiments are carried out to assess the response 
of both classical and ordinal (non-metric) scaling to errors, with procru.ctes statistics beine 
used to measure accuracy of recovery. A further scaling method, lea.;I square> scaling. is 
discusscd briefly and shown to  display empirically a useful combination of properties. as  is a 
~rchnique used to preprocess the dissimi!arity maxriu 

KEY WORDS Mul~idimensional scaling. robustness, procrustes statistics, euclidean 
models, simulation. 

1. INTRODUCTION 

In this paper the robustness-the response to errors in the data-of both 
classical scaling and the Shepard-Kruskal method of ordinal ("non- 
mctric") scaling is examined by simulation methods. Our approach to the 
study of robustness is based on the idea of assessing quantitatively the 
success of a scaling method in recovering known configurations. On exact 
data classical scaling does this exactly, and the ordinal method is almost 
exact; i r  is when the data contain errors that the exercise becomes an 
interesting one. Studies of this kind have been carried out by many 
authors; we give a brief review below. Apart from the scale of the 
expenmentation, two main features dibtingui~h the prcscnt study frcm this 
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274 R .  SIBSON. A .  BOWYER AND C. OSMOND 

earlier work. The first is the use of procrustes statistics to measure degree 
of fit: it is surprising that this approach has not been used in previous 
simulation studies. The second distinguishing fea:ure is the way error is 
introduced into the data: our study includes work on dissimilarities 
generated from probabilistic models whose structure is designed to capture 
some features of the way errors actually arise in practice, and in particular 
to throw some light on the effects of dependence between errors. 

The study falls into two major parts. The first treats classical scaling in 
some detail; the second part compares various different scaling methods 
on the same data. The scaling methods used are classical scaling, ordinal 
scaling, and least-squares scaling; a preprocessing transformation of data 
to  specified distributional form is also used. 

We follow the notation and terminology of the two previous papers in 
this series: Sibson (19781, where an account of procrustes statistics may be 
found; and Sibson (1979a). where an approximate analytical study of the 
rob~istness of classical scaling is carried out. The latter paper contains a 
brief description of the  classic^! scaling L. me!!?nd: 2!2 ;-lccn~!nt nf !he !.?rdil:al 
method is given by Kruskal (1Y64a. b): In thls paper we assume imiluri:\; 
~viti? both methods. iicfcrenccs to Sibsor, i l'iS8. igSYa1 ail! sdmztin~z~ bz 
made in the form, for example, I Theorem 4.3, 11 Lemma 3.3 

2. PREVIOUS WORK AND THE ROLE OF THIS STUDY 

Numerous simulation studies of various forms of multidimensional scaling 
have appeared, almost entirely in the psychometric literature. Some of 
these studies, such as that of Lingoes and Roskam (1973), have been 
primarily concerned with the effectiveness of various numerics! prncedures 
in reaching the true optimum quickly. This is an important technical 
problem, but it will not be our concern here. We assume that all the 
methods can be made to work with adequate efficiency and reliability in 
practice, although we comment in passing on the "local optimum" 
problem. We are concerned, as most previous studies have been, with the 
accuracy of reconstruction effected by a method once it has, by its own 
criteria, "worked properly". The method most commonly employed to 
assess this is the evaluation of the (squared) correlation between original 
and reconstructed distances. Cohen and Jones (1974) point out a number 
of objections to this: it is insensitive for similar configurations; the 
displacement of a single point can produce a misleading value; it is 
unaffected by the addition of a constant to  either or both sets of distances; 
it does not deal satisfactorily with the comparison of configurations of 
differing dimensionality. We would summarise these objections by saying 
that the correlation coefficient simply fails to relate properly to either the 
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geometrical or the probabilistic aspects of the problem. Another measure 
of success of reconsrruction which has been used is the Shepard-Kruskal 
srrcss achieved at oprimality in the ordinal method. This seems to us to  
reflect a misunderstanding of the rolc of the optlnxsed stress function; 
which measures the euclidranness of a set of ordinal data, and not thc 
cxtrnt to which the reconstruction matches the original configuration. The 
approach we adopt, using procrustes statistics, avoids these criticisms. These 
and other arguments for the use of an approach based on procrustes 
statistics are presented by Gower (1971b). Gower and Banfield (1974) 
have explored this approach in a simuiation study of ciassification 
methods. 

Nearly all the parameters and problem-dependent quantities occurring 
in ordinal scaling have been varied in previous simulation studies to  
determine their influence. Young (1970) examines the effect of the number 
of points; Sherman (1972) looks at the et'iect of varying the Minkowski 
metric parameter from which the interpoint distances are derived (but sec 
Shepard. 1974, for some cautionary remarks on ihis); whilst Wagenaar 
and Padmas ( i 9 3 )  consider [he anlcii.inl ~f error present in !he 
perturbations. Lingoes and Roskam ( 19 73 1 compare the Shepard-Kruskai 
method with the Guttman-Lingoes SSA-I method, but, as pointed out 
above, mainly with a view to assessing algorithmic efficiency and 
robustness. Spence (1972) compares the computer programs MDSCAL, 
SSA-I, and TORSCA; his conclusions are that there is little to  choose 
between the methods, but that a sensible choice of initial configuration in 
MDSCAL is important if the algorithm is to work properly. In an earlier 
paper (Spence, 1970) he uses simulation melhods to study the local 
optimum problem. Spence and Graef (1974) and Isaac and Poor (1974) 
discuss the problem of determining dimensionality in ordinal scaling. 
Several papers have attempted to provide a measure of comparison for an 
empirically-obtained stress value against the expected stress value 
obtained from random rankings in ordinal scaling; such papers are those 
of Klahr (1969). Spence and Ogilvie (1973). and Stenson and Knoll (1969). 
Specific geometric configurations are used by Spaeth and Guthery (1969) 
to test the recovery capability of the methods and to examine the 
monotonicity criterion. Finally, Cohen and Jones (1974) consider a model, 
motivated by psychological considerations, in which scaling performs a 
reconstruction, given that different levels of importance are attached to 
each dimension by a hypothetical subject. 

We choose to approach the problem differently. We do  not vary the 
number of objects, which we keep at fifty. We work exclusively with 
euclidean, not Minkowski, distance. We generate dissimilarities from 
various different euclidean models, chosen so as to aiiow various features 
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371. ..," R. SIBSON. A.  B(?'V!YEP, AND C OSVOND 

of the error response to be examined. Starting from classical scaling we 
establish the point at which it is inclined to break down and examine how 
it compares with ordinal scalin_g and also with least-squares scaling. We 
consider dimensionaii~y crireri:~ (Sibcn~i. 1979i1 I 111 !he conrexl 13f c!:,s>ica! 
scaling. 

3. FOUR EUCLIDEAN MODELS 
Our approach to the study of robustness by simulation methods is based 
on the view that in the majxity of applications of scaling methods i t  is 
nor appropriate to assume that the observed dissimilarities differ from the 
true interpoint distances by errors that are independent. There are 
certainly a few cases where the assumption of independent errors is an 
appropriate one; for example, it is argued by Sibson and Bowyer (19801 
that this is so in some problems arising in surveying and photogrammctry. 
We consider one such model for comparison pirrposec R u t  these cases are 
in the minoritv; In part~cular. !t IS clear that when J~ss~milarities or 
simiiariiies are caicuiated from oi?jet:ts-hy-attrihittes darn (Sihwn, 1'1721. 
thrt-s \ \ - i l l  I-*c >rtb>i;tr~t~ai clr~lcr~c-c i !~ \<* i \cJ  R: t f i~ r r  ~ i r x r !  xiling LIP err(>:. 
d~str~butlons by dccree. we sstabl~sh slmple. but pract~cally relevant. 
models for the generation of dissimilarities, and then invcstigatc the 
distributions which arise from these. 

The first step in setting up the models is to generate a configuration. 
We have taken fifty points as representi1.g a typical medium-scale 
problem, and we have not attempted to investigate by simnlation the 
effects of changing the number of poinrs. In fact our configurations are 
generated by realising fifty points i~niformly and independently on the unit 
disc of the appropriate dimensionality, but the only feature of real 
significance is, in our view, that the configurations should be roughly 
spherical with no special structure. We do  not generate an unlimited 
supply of new configurations. but we do  use enough to provide a check 
against being misled by the behaviour of any particular one. 

Our first model arises from the study of binary data, of the type where 
the coding of the states of each attribute into zero and one is arbitrary. 
Objects described by such attributes are usually compared by counting the 
number of attributes in which they differ. Thc resultant metric is 
known as Hamming distance in communication theory; its normalised 
complement with respect to the total number of attributes is a similarity 
coefficient long familiar in numerical taxonomy as the simple matching 
coefficient. For a fixed k-dimensional configuration. random Hamming 
distances can be generated by randomly located hyperplanes each dividing 
the space into two half-spaces arbitrarily coded as zero and one. If the 
hyperplanes are realised irom a Poisson hyperplane process. then (almost 

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
8:

53
 0

6 
N

ov
em

be
r 

20
14

 



surely) each Hamming distance is well defined and finite, and has a 
Poisson distribution whose parameter is thc product of the euclidean 
distance between the two points and the intensity of the process. the latter 
being exprcised in silltable unlts. The Hamming dis~ance ib. in geometrical 
terms, thc number of hyperplarics crossed i t ,  ping from one pomt to Ihe 
other. Clearly the mean ot a single Hamming distance distribution 1s 
proportional to the corresponding euclidean distance, 30 the relationship 
be~u-cen Hamming distance and euclidea!? distance ic roi~qhly linear. I t  is 
easy to sec that as the intensity of the Poisson process becomes large the 
i-elative values of the system of Hamming distances converge to those of 
the euclidean distances (almost surely). However, the Hamming distances 
are not independent; any two of them together have a bivariate Poisson 
distribution (see Mardia, 1970) whose parameters car? easily be expressed 
in geometrical terms. The system as a whole has as its joint distribution a 
multivariate generalisation of this blvariate Poisson distribution. All 
~ealihat~ons c7f system4 oi Hammin~  disIarrcza arising from this jnint 
dls[rihut~on ai i iui~i i l t i i~i i~ >afi:;l.j t!ic metric incq.;Ai~y. Hanxn!!?p dktancc 
is one of a larce claw of dissimilarity fui~ctions urhich do so (Gower-, 
1971 ~ i ) .  We call th -=  mcldc! !cur the generar Inn or e~c;l~dedn-iii\c ciista~lccs 
the Poisson hyperplane nlodel. In practicc it is sonkenicnt to condillon on 
the total number of hyperplanes involved, whereupon Poisson 
distributions become binomial. and it is in this form that we actually 
realise the model. Figure 3.1 shows the dependence of Hamming distance 
on euclidean distance for a realisation from this binomial hyperplane 
rrzodrl. The points lie in a narrow band demonstrating the near-linearity of 
the two distances. For smaller numbers of hyperplanes the width of the 
band is correspondingly grea!er. 

111 order to be able to assess the effects of the dependence structure in 
the Poisson hyperplane model we set up a model in which each individual 
dissimilarity has the same distribution as in the Poisson hyperplane 
model, but the dependence is removed, thereby producing a model with 
independent errors. Thus in this model the dissimilarity d(x , ) l i  has a 
Poisson distribution with parameter A e ( x , y )  where e(x ,y )  is euclidean 
distance, and the d ( x , y )  are independent; that is. the joint distribution of 
the d(x.  V )  is the product of the marginals, these marginals coinciding with 
those arising in the hyperplane model. In practice it is convenient to 
match the form of the Poisson hyperplane model actually realised, namely 
with conditioning on the total number of hyperplanes involved. This 
requires the use of independent binomial distributions rather than 
independent Poisson distributions. The dissimilarity-agai~lst-distance plots 
arising from this independent binomial model are visually 
indistinguishable from those arising in the binomial hyperplane model. 

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
8:

53
 0

6 
N

ov
em

be
r 

20
14

 



278 R. SIBSON. A. BOWYER AND C. OSMOND 

Our third model is chosen to provide some hold over the dissimilar~tieh 
which arise in problems where the data are in objects-byattributes form. 
and where the attributes are binary, but in contrast to the first model, 
where their states may be coded 0 ( -"ab~ence") , ' l (="prese~~ce~ '~ 
consistently over the whole system ot' attributes. A lam~liar example arlses 
In plant ccology. whcrc thc objccts are sites and the attributes are plant 
species, recorded as present absent at each ate.  A widely-used coefficient 

DIST(Y(CE 

FIGURE 3.1 

in such cases is Jaccard's coefficient, which we consider in the form of 
Juccurd distance, a dissimilarity coefficient (in fact a metric) obtained by 
dividing Hamming distance by the number of attributes "present" in either 
or both of the two objects under consideration. Jaccard distance takes 
values in [O,l], and so its relationship to euclidean distance certainly 
cannot be a linear one. A method of generating random Jaccard distances 
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M!JLT!D!MENS!ON4L SCALING 279 

is as follows. Each attribute is "present" over a region of space interior to 
a disc, whose radius is drawn from somz fixed distr~bution and whose 
centre is a point in a realisation of a Poisson point process. The condition 
that the expected disc content be finite is cnough to ensure that Jaccard 
distances are almost surely welI-defined. (except for thc rare case of two 
points each lying in no discs at all, for whlch we assign the value unity). 
This model actually has a certain simple-minded appeal as a model for 
random spatial speciatio~i, least by comparison :vitf? seme of the 
alternatives! Clearly any particular version of the moilel is characterised 
by the rate of the Poisson point process and the nature of !he radius 
distribution. It is easy to show that for a fixed radius distribution, the 
relationship between euclidean distance and expected Jaccard distance is a 
monotone one, with a decreasing fluctuation about the mcan as the 
intensity increases. The dependence of the monotone relationship on the 
nature of the radius distribution is calculable in principle: but has no 
simple f o r m  and is bcttcr trcated 3s unknown. The model is th11.; well- 
adap!ecl 1 0  disirngr~tsiitng beiwcw ciilssical dnd ordinili siaiiiig iiiethods. 
Figure 3.2 shows a iyp~cal dissimiiarity-versus-distance plot. plots of the 
expec:ed d:. 1 ~ 3 i t i j l l u l r r j  ..; , , ; ! . z ~ ; I ,  uguLJ. 2n7ii?c: ~UC!K!C~T!  distance for the constan? rad~us  
distribut~on also show this concawty. Again, the form in which the model 
is realised is a conditioned one, the total number of discs being fixed. We 
call this the Jncccird distance model. 

The fourth model relates to abuttal data. Data for scaling sometimes 
arise in the form of a three-valued dissimilarity coefficient whose values 
are "identical" (precisely between each object and itselfj, "neighbouring". 
and "not neighbouring". Such data arise when the objects are really 
regions rather tliaii p~iiiis,  and it is abuttals betweer. regioss which are 
recorded. Kendall (1971, 1974) has studied such data extensively. One 
possible method of analysis is to  represent regions by points, and then to 
assign conventionalised regions, with the implied neighbour or contiguity 
relationship, by way of the Dirichlet tessellation (see Green and Sibson, 
1978); this construct assigns to  each point the part of the space nearer to 
it than to any other point. To reconstruct configurations directly from 
abuttal data is not easy (McGinley, 1977), but can be made so by 
replacing the original three-valued dissimilarity coefficient by an integer 
valued one, the graph-theoretic distance or Wilkinson metric, which is the 
minimum number of abuttals traversed along a path from one point to 
another via abuttals. The distribution of euclidean distance between 
contiguous points in a planar Poisson process is known (Miles. 1970; 
Sibson, 1979b), but this knowledge does not extend to points at larger 
Wilkinson distances. However it appears from simulation that the mean 
eucIidcan distance is close to linear with the Wilkinson metric in two 
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poirits are generated; by generating these over a I-egion considerably larger 
than that occupied by the original configuration, edge effects are made 
negligible. As the number of additional p o i n ~ s  increases i r  appears that, as 
in the other models, the rclat~vc val-iahihty of the W~lkinson metric 
decreases. Plots of' the Wilkinson mctric against cuclidca~l distance show 
thpir near linear relation, in the wav that Finure 3.1 d n e  fnr the t?i!l~gi:~! 
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MULT!DIMFNSIONAL SCALING 28 1 

hyperplane model. Like the other models this Wlki11.sot7 rnelric nzodrl is 
realised In conditioned form. 

4. PROCRUSTES STATISTICS 

We always compare a recovered configurarion Y will1 ~ t s  parent 
configuration X by using a procrustes statist~c; a detailed accounl of the 
Ll~cu~q- is giii-n in S ibmi  (,!97P) The pnrricu!:..r Fcrm of s!a?ic?ic employcd 
allows Y  to be fittcd to X  under the action of the group of similarity 
transformations. that is, the group generated hy translation. rotation, 
reflexion. and uniform scale change. This leads to the statistic 

(trace ( yoX; X o Y , T ) 1 ' 2 ) 2  
G s ( X .  Y )  = trace X o  A'; - -- - -. -- 

trace Yo Y g  

as in I Section 7 .  We use y,(X, Y ) ,  which lies in thc range [O, I]. for all 
our comparisons. It is appropriate even with class~cal scaling to d o  this, 
because in practice the approximately linear relation between dissimilarity 
and distance is usually an unknown one. 

5. THE SCALING METHODS 

We consider in total three different scaling methods. The first of these is 
classical scaling of which a brief description can be found in I1 Section 1 ;  
we do not duplicate it here. 

The second method is the Shepard-Kruskal ordinal method as 
described by Kruskal (1964a, b). Many implementations and variants of 
this method exist. We have used exactly the original form of Kruskal's 
stress function, with the normalisation factor Edi;;  ties were dealt with by 
the primary treatment in which ties are an expression of ignorance and 
can be broken without charge; and the global ordering of all values of the 
dissimilarity coefficient was used. Kruskal's optimisation procedure was 
used. but in each case a variety of different initial configurations were tried 
so as to avoid local optimum problems. We believe that the procedures 
we have adopted make it most unlikely that any part of our study is 
vitiated by illc occurrence of local optima. It is to be noted that the 
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282 R. SIBSON, A. BOWYER AND C. OSMOND 

availability of the original configuration for comparison by procrustes 
analysis with the recovered configuration a: each stage further reduces the 
possibility of the occurrence of undetected local optima. 

The third method we have considered has made iitrle previous 
appearance in the literature; it is the method of ieast squares scaling. in 
which the aim is to find a configuration minim~sing .Z wij(Liij -Sii) '  where 
dij is achieved distance, aij is dissimilarity and wij is a weight. The method 
is i n  fact related to a specific statistical model if the error5 by which the 
dij differ from the dij are N(O, l / w i j )  and independent, then we are carrying 
out maximum likelihood estimation. Tht: particular appropriateness of this 
for the independent binomial model is clear. We consider it here in a 
general context, as a possible competitor for classical scaling and the w 

Shepxd-Kmskz! metkcd. Obviccs!y the !elst scpares method is 
"classical" in spirit, in that it attaches significance to the actual numerical 
values of the dissimilarities, but in other respects-for example the user 
defined diniensioiialiiy and the iieed tor aii iierati\,e approacli- ii has - i,,ore in common wi..irh :he Shepard K r d d  methx?. The oprimisation 

problem appears to be considerably better behaved than that arising in 
the Shepard-Kt-uskai ~nel'nod, Sibwn and bow ye^ (i48iii round that hr. 

Fletcher-Reeves algorithm (Fietcher 2nd Reeves, 1964) handles it very 
successfully. Previous references to lea-st squares scaling are as follows, 
The least squares goodness of fit criterion is mentioned by Spaeth and 
Guthery (1969), but there is no indication that they have considered any 
actual method based upon it. Anderson (1971) also considers this idea, but 
gives no indication of having implemented a p:ac:ical method. Chang and 
Lee (1973), following Sammon (1969) consider the special case where wij  
= l lSi j ,  a method Sammon cails "non-linear mapping". The least squares 
criterion occurs also in the Guttman-Lingoes methods (see Lingoes and 
Roskam 1973, p. 20) but in a context not quite parallel to the present one. 
Bloxom (1978) discusses a related but more complicated least squares 
method requiring a special computational algorithm. 

We also give consideration to  a preprocessing method of potential value 
in connection with classical scaling and least squares scaling. This is 
essentially a technique suggested by Young (1970). The first reference we 
are aware of for a method of this type is Benzkcri (1964) his work is 
discussed by Shepard (1966). Faced with ordinal data we may obtain a 
provisional numerical structure by replacing the ranking numbers by 
suitably chosen quantiles from the distribution we would expect the 
distances to  follow if the configuration were a sample of independent 
observations from: say, a multivariate normal distribution. The system of 
distances between independent points is not itself a system of independent 
random variables, but it is dissociated (McGinley and Sibson, 1975; 
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MUI.TIDIMENSIONAL SCALING 283 

Silverman. 1976). and thus many parallel limit theorems apply: in 
particular, the empirical distribution function of the distances converges to 
the distribution of a single distance. and this provides the method with 
some kind of' justification. We explosc the effects of assigning numerical 
values to  ordinal data under the assumption that the underl~ing 
configuration is sphel-ical normal and also under the assumptmn that i t  13 

uniform on the disc. 

6: THE SIMULATION EXPERIMENTS AND WHAT THEY SHOW 

6.1 Classical scaling 

Scaling has been applied to data from all four oi the probabilistic models 
introduced in Section 3. For the binomial hyperplane model these have 
been retatcd to original configurations lying in 2, 3. 4, 5 and 6 dimensions; 
for the independent binomial model in 2 and 6 dimensions: but for the 
others in 2 iiirnens~ons only. Extension io higher dimensions r ~ r  t ! ~  

Tacrarci distance model would be straigh!forward, hut r h ~  Wilkinson 
riieirii iiicjdrl i> !ess rasi!y c~fended betawe the conipu~a~ion iil geiic-rai 11- 

dimensional lessellations is not yet available. 
We have used a variety of parcnt configurations. generated as in Section 

3, but there seems no grcat dependence upon them so they are not 
recorded here individually. 

For each model, in each dimensional space, we investigate the procustes 
statistic at six different levels corresponding to different intensities of the 
underlying Poisson process. For each model, level, and space we repeat 
the experiment ten timcs with different rea!isations of the Poisson process. 
There is one exception: for the Wilkinson metric model we use twenty 
replications. 

To  compare different numbers of dimensions we make the 
standardisation that the expected number of hyperplanes intersecting a 
line segment of given length should be a constant. Thus in six dimensions 
"1000 hyperplanes" should be interpreted as that number of hyperplanes 
which will give the same expected number of cuts of a line segment of 
length I ,  as would 1000 hyperplanes in two dimensions-generally this 
number will be higher as the number of dimensions increases. 

For the Jaccard distance model the radius of discs that cut the unit disc 
is given an exponential distribution. We use the values 0.2 and 1.0 for the 
mean of this distribution. 

For the Wilkinson metric model extra points are added to the central 
disc of radius two, the con~bination bemg tessellated in the square -4  
<.x,yS1. - Both of these are precautionary measures to minimise edge 
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effects. Since the Wilkinson distance increases approximately as the square 
root of the number of points in the unit disc we may use ,. ( F O + i  extra 
points) t o  measure the level. 

Meall values and sample standard dev!at!ons ior !hc procrustei; i;tatisric 
are -;hnwn in Table I and the corresponding log log plo!> (Figul-c.: 6.1 6-41 

FIGURE 6.1 

provide an illuminating visual representation of the information in the 
table. 

The distribution of the procrustes statistic is known to bt: 
approximately general %' in type. see 11, and so will have some skewness. 
We plot and record the mean value over the ten or twenty replications. 
The procrustes statistic increases with increasing dimensions; it decreases 

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
8:

53
 0

6 
N

ov
em

be
r 

20
14

 



7QC. riuv R. SiDSGN. A. "o=WYER A X E  C GSMOND 

as the rates of the Poisson process increase; it is always smaller for the 
larger of the two disc radii in the Jaccard distance model. 

Binomial hyperplane model-the 1og:log plots are remarkably lincar. 
with slope close to - 1. Thus rhe dominant term in the prncruqles <t;~tisr~c 
is constant.no. of hyperplanes. &here the constant depends upon the 

INDEPENDENT B I W I I L  IlODEL t LOG - LOG PLOT 

FIGURE 6.2 

dimensionality, the standardisation used to compare dimensions, and the 
procrustes statistic normalisation. 

Independent binomial model-here again there is striking "constant/no. 
of hyperplanes" behaviour for both numbers of dimensions chosen. 
However the constant is quite different from that in the binomial 
hyperplane model. For two dimensional configurations the difference is a 
factor of about two. Thls represents one of the most interesting results. 
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MULTIDIMENSIONAL SCALING 287 

The covariance structure has the effect of reducing the available 
information; certainll- in the case of tu-o dimensions. For six dimensions 
there is httle difference. 

Jaccarc! distance model-here the log !eg p!ot is much !latter than 
hefnre. There is the siieecsrion -. r h t  classical scaling will neY:er be ab!? 

FIGURE 6.3 

exactly to reproduce the original configuration, and that the procrustes 
statistic will not fall beneath a certain level dependent upon the disc 
radius distribution. 

Wilkinson metric model-the logjlog plot is again quite linear with 
slope about - 1: This has been achieved only after the transformation of 
the number of extra points. It would seem that the procrustes statistic 
could be made arbitrarily small but more slowly, the behaviour being 
i, (No, of extra points). 
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FIGURE 6.4 

Eigenvalue Spectra 

One extra difference between the binomial hyperplane and independent 
binomial models is that the former produces a more clearly determined 
dimensionality of configuration. The covariance structure is at work to 
provide t h ~ s  effect. Lingering perturbed zero eigenvalues for thc 
independent binomial model occur at  both choices of dimensionality. The 
information contained within these higher eigenvalues is available to be 
exploited by ordinal scaling (see Section 6.2). For the Jaccard distance 
model there are more positive perturbed eigenvalues as the rate of the 
Poisson disc process increases. However. the third eigenvalue decreases i n  
loading so that it is possible to  estimate the dimensionality of the parent 
configuration as the rate increases. T!:ese effects x e  cxused by the non- 
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linearity between Jaccard and Euclidean distances. which forces many 
dissimilarities to be close and thus classical scaling tries 10 reproduce in 
higher and higher numbers of dimensions The Wilkinson metric model 
givzs a clearly two-dimms~onal spectrum fhr nhich t!ic pt'rtul-bed zero 
eigenwluec drop away rjuitc slowly. 

Subsidiary techniques 

The trace criterion, of I 1  Sectton 7. lor Je~errnlnlng the dimenh~iai i t )  o f  
the configuration suggests that the sum of' genuine positive eigenvalues 
ought to be approximately equal to the sum of ail the eigenvalueb. Since 
we know the dimensionality of the original configuration it is possible to 
examine the success of this criterion by simply ionking at the eigenvalue 
spectrum after classical scaling. We find, as might be expected, that the 
success is much dependent upon the linearity of the dissimilarity with 
euclidean distance. Thus the trace criterion works weii for the independcnt 
binom~al and binomtal hygcrplanr motiel~, especially at high numbcrs 01' 
hyperplanes: 11 bvurhh fairly well f ~ r  ihc Wilk:csor, me?rlc model; it IS very 
pool S:,r {lie .Incc.ard diq;ti;ce n:~x!r!. i...hcrz !!x addi!ion of di.;c< forcw 
more and more of Ihc perturbed zero rigen\aiuv, in hecor~lc pos i i i~c .  Si, 
its use can only be recommended in the case when confidence can be 
placed in the linearity of the dissimilarity with euclidean distance. 

Much the same applies to the magnitude criterion. As in I1 Section 2 we 
reject as spurious any positive eigenvalue whose magnitude does not 
substantially exceed that of the Iargest negative eigenvalue. When the 
perturbed zero eigenvalues are mainly positive the criterion will be useless: 
and this happens when there is much non-cuclideanness. So in practice we 
find that the correct dimensionality wiii be found only in the hyperplane, 
and to a lesser extent. Wilkinson models. 

6.2 Comparison of different scaling methods 

Thirty dissimilarity matrices were derived, six from each of the 
probabilistic models except the Jaccard distance model which contributed 
twelve. These dissimilarity matrices were then used as input to the scaling 
methods which were thus compared on the same data. We considered 
only two-dimensional parent configurations. Although this involves only a 
moderate number of dissimilarity matrices, other simulations have been 
undertaken and the results seem similar enough to regard the values 
presented as typical. 

The scaling methods used were classical scaling, ordinal scaling, least 
squares scaling wi th  weights all 1, lcast squares scaling with weights I , / i i i j  
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Jaccard 
distance 
(constant 
radius 
0.2) 

Wilkinson 
metric 

classical 
ordinal 
least squares ( I )  
least squares (I/($,,) 
preprocessing (normal) 
preprocessing (uniform) 

classical 
ordinal 
least squares (1) 
least squares (l/dij) 

No. or discs 
50 100 200 500 

0.8664 0.7603 0.7775 0.766X 
0.8398 0.7461 0.7359 0.6921 
0.8595 0.9033 0.8433 0.9525 
09007 0.8772 0.8291 0.9753 
08.7975 0.7355 0.71 72 0.71 I8 
0.7972 0.7354 O.7170 0.71 17 

,'(50 + f extra points) 
15.8 21.2 25.5 29.2 

0.022 0.0095 0.01 01 0.01 1 1 
11.0175 0.0076 0.0074 0.0095 
O.Oi0 0.0076 0.0076 0.009.3 
1 5 0.0070 0.0069 0.0089 

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
8:

53
 0

6 
N

ov
em

be
r 

20
14

 



292 R. SIBSON. A. BOWYER A N D  C' O S M O N D  

("non-linear mapping"). In addition we used the pre-processing technique 
on all of the Jaccard dissimilarities. followed by classical scaling. IIere i t  
was assumed that the parent configuration resembled a sample from a 
spherical normal distribution. or altcrnativclj a s'tmple fiwm a uniform 
distribut~on on  the disc, which is the actual parent dtstrlbut~on. 

To avoid thc problem of local optima. ordinal scaling was used both 
with random starting configuration> and with the configuration output by 
classical scaling. The least squares methods were always used with the 
configuration output from classical scaling as a starting configuration. 

For the Jaccard distance model one set of six dissimilarity matrices was 
derived from a constant radius distribution of 0.2, the other set of six were 
from an exponential disc radius distribution of mean 0.2. The convention 
for recording Wilkinsnn metric model levels is maintained Where there 
are n extra points added in the disc of radius 2 the level is recorded as 
,/(50 + i n  ). 

Preprocessing method: following the idea of 111 Section 5 we replace the 
i t !?  !)!-dy!-pd Iji<zi!)?i!;lrj!x.; - hy ; lnn~~~pt. iat+ q!lz!lfi!e <>f !!??ernn~i~~? 

; ' I " . '  ".ss- t ' .  :' 

d~stance di~tribution. Under the assurnptlon that the configuration IS 

>phertcaii> iiormaii) JiJtributtd uitil unit iariailic> thc distribution d 
squared interpoint distances is approxirna~eiy a ZX: distribution. Under 
the assumption that the configuration is uniformly distributed on a disc of 
radius one, the interpoint distance density is (see eg., Bartlett, 1964) 
4 r / n { c o s - ' i r - $ r , / ( l - i r L ) )  ( 0 5 r 5 2 ) .  Where there happen to be ties 
the transformed values may be averaged. There is no point in considering 
trace or magnitude criteria because we have imposed the dimensivnality of 
the reconstruction. 

The results are summarised in Table 11. We look at them first from the 
point of view of the probabilistic models. 

Binomial hyperplane model-all methods of scaling produce 
reconstructions yielding procrustes statistics of similar low value. In 
particular classical scaling compares well with the others. For higher 
numbers of hyperplanes the least squares method with weights l / h i j  is 
superior; this fits the theory of Section 5 concerning maximum likelihood 
estimation. 

Independent binomial model-in this case classical scaling is markedly 
inferior to the other methods, which are able to exploit the information 
contained in the perturbed zero eigenvalues that persist for this model. 
The least squares methods work even better than ordinal scaling; and the 
maximum likelihood theory is seen to  be valid for higher numbers of 
hyperplanes where weights 1 !S i j  are again appropriate. 

Jaccard distance modcl-variable radius of disc--classical scaling works 
very badly compared to ordinal scaling. This is no surprise since the 
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MI!LTIDIMENSIONAL SCALING 293 

dissimilarity bears little resemblance to euclidean distance. The least 
squares methods fail for the same reason when the number of discs is 
large. but are surprisingly good for moderate numbers. The performance 
of classical scal~np can he significantly impro~ed by either of the prr- 
processing transforniat~ons. especially that wh~ch assumes, correctly. an 
underlying uniform distributioll fur the configuration. 

Jaccard distance model --const~ui[ radius of disc all dissimilarities 
corresponding to points at Jictance greater than 0.4 will be equal and 
have value unity. The least squarcs nlethods are unable to cope with this 
sparsity of diffei-entiation and consistently producc bad reconstructions. 
Classical scaling is slightly better and can be still improved by the 
preprocessing transformations: although there is little to choose between 
them. Ordinal scaling never produces a sig~rificantly worse reconstruction: 
it is again clearly best for higher numbers of discs. However none of the 
methods are able to produce reconstructions yielding low procrustcs 
statistics due to the 11iittil.r: of the dissimilarity function. 

. -7 . .  i l i  1 1 1  c:sssic:!! cc:;!inF is :: ??,t!!I!lv c!>!??p.!i!c)r !;I.>!- 

the other merhods: altliou& not supenw to  he other methods !t IS never 
rr?uch tvorue I h r  least square. rnr!ht)c!. mt- p ~ i c l - d l l ~  supcridr. ; + x ~ ; ~ i i ;  
when the weights are I , ,iij. 

We may also look at the results from the point of view of the scaling 
methods. 

Classical scaling--compares well with ordinal scaling for the most 
euclidean-like models except where there is much information in the 
higher eigenvalues (independent binomial). For the least euclidean model 
it compares unfavourably. as would be cxpected. 

Least squares scaling--generally slightly superior to ordinal scaling for 
the more euclidean models but certainly inferior for the Jaccard distance 
model. The use of weights llii,, (that is, Sammon's (1969) "nonlinear 
mapping") is usually to be recommended. 

Ordinal scaling-wen when there is useful information in the numerical 
values of the dissimilarities. ordinal scaling is never significantly worse 
than methods which take advantage of the numerical values, provided that 
it is given a sensible starting configuration. About one-half of the runs 
from random starts had not converged adequately within 50 iterations. I t  
is only on the Jaccard distance, constant radius model that ordinal scaling 
really fails to obtain a reasonable reconstruction, and even there its 
overall performance is better than that of other methods once the number 
of discs becomes large. On [he Jaccard distance, exponential radius model 
the superiority of ordinal scaling over all alternative methods is very 
apparent at larger numbers of discs. 

Preprocessing techniques-these seemed quite successful in improving 
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294 R.  SIBSON, A. BOWYER AND C. OSMOND 

the performance of classical scaling. However, the marked superiority of 
the (correct) uniform assumption as against the (incorrect) spherical 
assumption in our experiments suggests that the technique may be quite 
sensitive to the details of the underlying structure. Under the assumption 
of normality there are too many large dissimilarities after transformation 
and the dissimi1arity:distancc plot becomes blurred at higher distances. 
lying in a more convex shape. The corresponding plot under the uniform 
assumption produces the familiar cigar-shaped scatter. 

The time taken by the algorithms varies as follows 
classical 4 ordinal .r lcast squares < ordinal < 2 x ordinal 

(random (classical (classical (random 
start) start) start) start) 

As a less serious footnote we mention the procrustes statistics obtained 
when we reconstruct a map of Great Britain from the A.A. Handbook 
familiar road distance table: 

Classical scallnp 
Ordinai siaiing 
Least squares scalmg ( 1 )  
Least squares scaling ( l i d i j )  

There is not much to choose between the methods in this case, although 
classical scaling is more liable to misplace a few individual points badly. 
Ordinal scaling from a random start is prone to  produce local minimum 
solutions with individual towns placed on the wrong side of the main 
North-South axis, or, in one extreme case, with the whole of Scotland 
reflected about this axis! 

7. CONCLUSIONS 

We have gained insight into the use of procrustes statistics, developing a 
feel for the absolute values they take and the variability to  be expected. 
We have investigated the effect of dependence among dissimilarities and 
seen that i t  may substantially influence accuracy of reconstruction. The 
behaviour of the procrustes statistic after classical scaling has been clearly 
related to the euclideanness of the dissimiliarity function. The comparative 
experiments show the superiority of ordinal scaling, especially for non- 
euclidean dissimilarity functions, from the relative value of the procrustes 
statistics for the various methods. Both least squares scaling and the 
preprocessing technique have been shown to possess useful properties. 
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